Exemplo n.º 1
0
def test_scikit_learn_wrapper_invalid_problem_type():
    evalml_pipeline = make_pipeline_from_components([RandomForestClassifier()],
                                                    ProblemTypes.MULTICLASS)
    evalml_pipeline.problem_type = None
    with pytest.raises(
            ValueError,
            match="Could not wrap EvalML object in scikit-learn wrapper."):
        scikit_learn_wrapped_estimator(evalml_pipeline)
Exemplo n.º 2
0
    def __init__(self, input_pipelines=None, final_estimator=None, cv=None, n_jobs=None,
                 random_state=None, random_seed=0, **kwargs):
        """Stacked ensemble base class.

        Arguments:
            input_pipelines (list(PipelineBase or subclass obj)): List of pipeline instances to use as the base estimators.
                This must not be None or an empty list or else EnsembleMissingPipelinesError will be raised.
            final_estimator (Estimator or subclass): The estimator used to combine the base estimators.
            cv (int, cross-validation generator or an iterable): Determines the cross-validation splitting strategy used to train final_estimator.
                For int/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.
                Possible inputs for cv are:

                - None: 5-fold cross validation
                - int: the number of folds in a (Stratified) KFold
                - An scikit-learn cross-validation generator object
                - An iterable yielding (train, test) splits
            n_jobs (int or None): Non-negative integer describing level of parallelism used for pipelines.
                None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used.
                Defaults to None.
                - Note: there could be some multi-process errors thrown for values of `n_jobs != 1`. If this is the case, please use `n_jobs = 1`.
            random_state (None, int): Deprecated - use random_seed instead.
            random_seed (int): Seed for the random number generator. Defaults to 0.
        """
        if not input_pipelines:
            raise EnsembleMissingPipelinesError("`input_pipelines` must not be None or an empty list.")
        if [pipeline for pipeline in input_pipelines if pipeline.model_family in _nonstackable_model_families]:
            raise ValueError("Pipelines with any of the following model families cannot be used as base pipelines: {}".format(_nonstackable_model_families))

        parameters = {
            "input_pipelines": input_pipelines,
            "final_estimator": final_estimator,
            "cv": cv,
            "n_jobs": n_jobs
        }
        parameters.update(kwargs)

        if len(set([pipeline.problem_type for pipeline in input_pipelines])) > 1:
            raise ValueError("All pipelines must have the same problem type.")

        random_seed = deprecate_arg("random_state", "random_seed", random_state, random_seed)
        cv = cv or self._default_cv(n_splits=3, random_state=random_seed, shuffle=True)
        estimators = [scikit_learn_wrapped_estimator(pipeline) for pipeline in input_pipelines]
        final_estimator = scikit_learn_wrapped_estimator(final_estimator or self._default_final_estimator())
        sklearn_parameters = {
            "estimators": [(f"({idx})", estimator) for idx, estimator in enumerate(estimators)],
            "final_estimator": final_estimator,
            "cv": cv,
            "n_jobs": n_jobs
        }
        sklearn_parameters.update(kwargs)
        super().__init__(parameters=parameters,
                         component_obj=self._stacking_estimator_class(**sklearn_parameters),
                         random_seed=random_seed)
Exemplo n.º 3
0
def test_scikit_learn_wrapper(X_y_binary, X_y_multi, X_y_regression, ts_data):
    for estimator in [estimator for estimator in _all_estimators() if estimator.model_family != ModelFamily.ENSEMBLE]:
        for problem_type in estimator.supported_problem_types:
            if problem_type == ProblemTypes.BINARY:
                X, y = X_y_binary
                num_classes = 2
                pipeline_class = BinaryClassificationPipeline
            elif problem_type == ProblemTypes.MULTICLASS:
                X, y = X_y_multi
                num_classes = 3
                pipeline_class = MulticlassClassificationPipeline
            elif problem_type == ProblemTypes.REGRESSION:
                X, y = X_y_regression
                pipeline_class = RegressionPipeline

            elif problem_type in [ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_MULTICLASS, ProblemTypes.TIME_SERIES_BINARY]:
                continue

            evalml_pipeline = pipeline_class([estimator])
            scikit_estimator = scikit_learn_wrapped_estimator(evalml_pipeline)
            scikit_estimator.fit(X, y)
            y_pred = scikit_estimator.predict(X)
            assert len(y_pred) == len(y)
            assert not np.isnan(y_pred).all()
            if problem_type in [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]:
                y_pred_proba = scikit_estimator.predict_proba(X)
                assert y_pred_proba.shape == (len(y), num_classes)
                assert not np.isnan(y_pred_proba).all().all()
Exemplo n.º 4
0
def test_scikit_learn_wrapper(X_y_binary, X_y_multi, X_y_regression):
    for estimator in [
            estimator for estimator in _all_estimators()
            if estimator.model_family != ModelFamily.ENSEMBLE
    ]:
        for problem_type in estimator.supported_problem_types:
            if problem_type == ProblemTypes.BINARY:
                X, y = X_y_binary
                num_classes = 2
            elif problem_type == ProblemTypes.MULTICLASS:
                X, y = X_y_multi
                num_classes = 3
            elif problem_type == ProblemTypes.REGRESSION:
                X, y = X_y_regression
            elif problem_type in [
                    ProblemTypes.TIME_SERIES_REGRESSION,
                    ProblemTypes.TIME_SERIES_MULTICLASS,
                    ProblemTypes.TIME_SERIES_BINARY
            ]:
                # Skipping because make_pipeline_from_components does not yet work for time series.
                continue

            evalml_pipeline = make_pipeline_from_components([estimator()],
                                                            problem_type)
            scikit_estimator = scikit_learn_wrapped_estimator(evalml_pipeline)
            scikit_estimator.fit(X, y)
            y_pred = scikit_estimator.predict(X)
            assert len(y_pred) == len(y)
            assert not np.isnan(y_pred).all()
            if problem_type in [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]:
                y_pred_proba = scikit_estimator.predict_proba(X)
                assert y_pred_proba.shape == (len(y), num_classes)
                assert not np.isnan(y_pred_proba).all().all()
Exemplo n.º 5
0
def test_scikit_learn_wrapper_invalid_problem_type():
    evalml_pipeline = MulticlassClassificationPipeline([RandomForestClassifier])
    evalml_pipeline.problem_type = None
    with pytest.raises(ValueError, match="Could not wrap EvalML object in scikit-learn wrapper."):
        scikit_learn_wrapped_estimator(evalml_pipeline)