Exemplo n.º 1
0
def run(model, description):
    run_id = str(uuid4())

    model.run(run_id)
    K.clear_session()

    model_instance = evaluate.load(os.path.join(
        config.MODEL_DIR,
        "{}-{}.h5".format(run_id, model.MODEL_NAME),
        ))

    train, validation, test_data = data()
    train_data_stats = characterize_data(train)
    validation_data_stats = characterize_data(validation)
    test_data_stats = characterize_data(test_data)
    results = test(model_instance, train, validation, test_data)

    result = Result(
        model.MODEL_NAME,
        run_id,
        train_data_stats,
        validation_data_stats,
        test_data_stats,
        description,
        **results
        )
    db.session.add(result)
    db.session.commit()
def predict(image):
    '''
    Write your code for prediction here.
    '''
    import evaluate
    answer = 'xyzabc'  # sample needs to be modified
    img = image
    model = evaluate.load('./merge4.h5')
    test_data, test_labels = evaluate.load_data()

    test = test_data
    #train_l=train_labels
    test_l = test_labels

    test_data, test_labels = evaluate.preprocessing(test_data, test_labels)
    prediction = evaluate.predictor(model, test_data, 250)

    accuracy = evaluate.test_accuracy(prediction, test_l)

    best_acc, character = evaluate.best_accuracy(prediction, test_l)

    print(best_acc)

    thresh, im = evaluate.thresholding(image)

    gsblur = evaluate.cleaning(thresh)

    answer = evaluate.extract(model, gsblur, im, character)

    print(answer)

    return answer
Exemplo n.º 3
0
def run(model,
        description,
        input_form,
        label_form="shrunk",
        split_id=None,
        loaded_data=None,
        hyperparameters=dict()):
    run_id = uuid4()
    if split_id is None:
        split_id = run_id

    history = model.run(run_id,
                        input_form=input_form,
                        loaded_data=loaded_data,
                        label_form=label_form,
                        hyperparameters=hyperparameters)
    K.clear_session()

    model_instance = evaluate.load(
        os.path.join(
            config.MODEL_DIR,
            "{}-{}.h5".format(str(run_id), model.MODEL_NAME),
        ))

    if loaded_data is None:
        train, validation, test = data(split_id,
                                       input_form=input_form,
                                       label_form=label_form,
                                       balanced_train=True)
    else:
        train, validation, test = loaded_data
        train.reset()
        validation.reset()
        test.reset()

    train_data_stats = characterize_data(train)
    validation_data_stats = characterize_data(validation)
    test_data_stats = characterize_data(test)
    results = test_model(model_instance, train, validation, test)
    training.reset()
    validation.reset()
    test.reset()

    result = Result(model.MODEL_NAME,
                    str(run_id),
                    str(split_id),
                    train_data_stats,
                    validation_data_stats,
                    test_data_stats,
                    description,
                    input_form,
                    label=label_form,
                    hyperparameters=hyperparameters,
                    history=history,
                    **results)
    db.session.add(result)
    db.session.commit()
Exemplo n.º 4
0
def extract_tuples_with_simplification(source_path, save_path):
    documents = load(source_path)
    documents_ = []
    with open(save_path, "w", encoding="utf-8") as fo:
        for document in documents:
            doc = [sent for sent, _ in document]
            sentence_tuples = defaultdict(list)
            for tuple_ in process_document(doc, True):
                sentence_tuples[tuple_.predicate.sentence].append(tuple_)
            document_ = []
            for sent in doc:
                tuples = sentence_tuples.get(sent)
                if tuples is None:
                    tuples = []
                document_.append((sent, tuples))
            documents_.append(document_)
        with open(save_path, "wb") as fo:
            pickle.dump(documents_, fo)
Exemplo n.º 5
0
def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_summarization", model_args, data_args, framework="tensorflow")
    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity(logging.INFO)
    transformers.utils.logging.set_verbosity(logging.INFO)

    # Log on each process the small summary:
    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region T5 special-casing
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )
    # endregion

    # region Detecting last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
    # endregion

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Load model config and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
    # endregion

    # region Dataset preprocessing
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.")
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
    else:
        train_dataset = None

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
    else:
        eval_dataset = None
    # endregion

    # region Text preprocessing
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        model = TFAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

        model.resize_token_embeddings(len(tokenizer))
        # endregion

        # region Prepare TF Dataset objects
        if model.config.decoder_start_token_id is None:
            raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
        tf_train_dataset = dataset_to_tf(
            train_dataset,
            model,
            tokenizer,
            total_batch_size=total_train_batch_size,
            num_epochs=training_args.num_train_epochs,
            shuffle=True,
        )
        tf_eval_dataset = dataset_to_tf(
            eval_dataset,
            model,
            tokenizer,
            total_eval_batch_size,
            num_epochs=1,
            shuffle=False,
        )
        # endregion

        # region Optimizer, loss and LR scheduling
        # Scheduler and math around the number of training steps.
        num_update_steps_per_epoch = len(train_dataset) // total_train_batch_size
        num_train_steps = training_args.num_train_epochs * num_update_steps_per_epoch
        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=0
        )

        def masked_sparse_categorical_crossentropy(y_true, y_pred):
            # We clip the negative labels to 0 to avoid NaNs appearing in the output and
            # fouling up everything that comes afterwards. The loss values corresponding to clipped values
            # will be masked later anyway, but even masked NaNs seem to cause overflows for some reason.
            # 1e6 is chosen as a reasonable upper bound for the number of token indices - in the unlikely
            # event that you have more than 1 million tokens in your vocabulary, consider increasing this value.
            # More pragmatically, consider redesigning your tokenizer.
            losses = tf.keras.losses.sparse_categorical_crossentropy(
                tf.clip_by_value(y_true, 0, int(1e6)), y_pred, from_logits=True
            )
            # Compute the per-sample loss only over the unmasked tokens
            losses = tf.ragged.boolean_mask(losses, y_true != -100)
            losses = tf.reduce_mean(losses, axis=-1)
            return losses

        # endregion

        # region Metric
        metric = evaluate.load("rouge")
        # endregion

        # region Training
        model.compile(loss={"logits": masked_sparse_categorical_crossentropy}, optimizer=optimizer)

        if training_args.do_train:
            logger.info("***** Running training *****")
            logger.info(f"  Num examples = {len(train_dataset)}")
            logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
            logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
            logger.info(f"  Total train batch size = {total_train_batch_size}")
            logger.info(f"  Total optimization steps = {num_train_steps}")

            model.fit(
                tf_train_dataset,
                epochs=int(training_args.num_train_epochs),
                steps_per_epoch=num_update_steps_per_epoch,
            )
        # endregion

        # region Validation
        if data_args.val_max_target_length is None:
            data_args.val_max_target_length = data_args.max_target_length

        gen_kwargs = {
            "max_length": data_args.val_max_target_length if data_args is not None else config.max_length,
            "num_beams": data_args.num_beams,
        }
        if training_args.do_eval:
            logger.info("Evaluation...")
            for batch, labels in tqdm(
                tf_eval_dataset, total=len(eval_dataset) // training_args.per_device_eval_batch_size
            ):
                batch.update(gen_kwargs)
                generated_tokens = model.generate(**batch)
                if isinstance(generated_tokens, tuple):
                    generated_tokens = generated_tokens[0]
                decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
                decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
                decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

                metric.add_batch(predictions=decoded_preds, references=decoded_labels)

            result = metric.compute(use_stemmer=True)
            result = {k: round(v * 100, 4) for k, v in result.items()}

            logger.info(result)
        # endregion

        if training_args.output_dir is not None:
            model.save_pretrained(training_args.output_dir)
Exemplo n.º 6
0
def xrun(fold,
         loaded_data,
         model,
         description,
         input_form,
         label_form="outcome",
         split_id=None,
         hyperparameters=dict()):

    # gen random id for this specific parameter run
    run_id = uuid4()
    if split_id is None:
        split_id = run_id

    # calling run function on the cross validation v1 model
    history = model.run(run_id,
                        mode='cross',
                        loaded_data=loaded_data,
                        input_form=input_form,
                        label_form=label_form,
                        hyperparameters=hyperparameters)
    # clearing the training session because we will be running multiple models
    K.clear_session()

    # load the model instance - this takes awhile
    model_instance = evaluate.load(
        os.path.join(
            config.MODEL_DIR,
            "{}-{}.h5".format(str(run_id), model.MODEL_NAME),
        ))

    # fold_train, fold_validation, fold_test, fold_holdout_test = loaded_data
    fold_train, fold_validation, fold_test = loaded_data

    fold_train.reset()
    fold_validation.reset()
    fold_test.reset()
    # fold_holdout_test.reset()

    train_data_stats = characterize_data(fold_train)
    validation_data_stats = characterize_data(fold_validation)
    test_data_stats = characterize_data(fold_test)
    # holdout_test_data_stats = characterize_data(fold_holdout_test)

    # testing of the data
    # results = test_model(model_instance, fold_train, fold_validation, fold_test, fold_holdout_test)
    results = test_model(model_instance, fold_train, fold_validation,
                         fold_test)
    fold_train.reset()
    fold_validation.reset()
    fold_test.reset()
    # fold_holdout_test.reset()

    holdout_test_data_stats = 'na'

    result = XResult(fold,
                     config.NUMBER_OF_FOLDS,
                     model.MODEL_NAME,
                     str(run_id),
                     str(split_id),
                     train_data_stats,
                     validation_data_stats,
                     test_data_stats,
                     holdout_test_data_stats,
                     description,
                     input_form,
                     label_form,
                     hyperparameters=hyperparameters,
                     history=history,
                     **results)
    db.session.add(result)
    db.session.commit()
Exemplo n.º 7
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_seq2seq_qa", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(data_args.dataset_name,
                                    data_args.dataset_config_name,
                                    cache_dir=model_args.cache_dir)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]

        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    field="data",
                                    cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    model.resize_token_embeddings(len(tokenizer))

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    # Preprocessing the datasets.
    # We need to generate and tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
        )
        return

    # Get the column names for input/target.
    dataset_columns = question_answering_column_name_mapping.get(
        data_args.dataset_name, None)
    if data_args.question_column is None:
        question_column = dataset_columns[
            0] if dataset_columns is not None else column_names[0]
    else:
        question_column = data_args.question_column
        if question_column not in column_names:
            raise ValueError(
                f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.context_column is None:
        context_column = dataset_columns[
            1] if dataset_columns is not None else column_names[1]
    else:
        context_column = data_args.context_column
        if context_column not in column_names:
            raise ValueError(
                f"--context_column' value '{data_args.context_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.answer_column is None:
        answer_column = dataset_columns[
            2] if dataset_columns is not None else column_names[2]
    else:
        answer_column = data_args.answer_column
        if answer_column not in column_names:
            raise ValueError(
                f"--answer_column' value '{data_args.answer_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_answer_length for training.
    max_answer_length = data_args.max_answer_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(
            model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def preprocess_squad_batch(
        examples,
        question_column: str,
        context_column: str,
        answer_column: str,
    ) -> Tuple[List[str], List[str]]:
        questions = examples[question_column]
        contexts = examples[context_column]
        answers = examples[answer_column]

        def generate_input(_question, _context):
            return " ".join([
                "question:",
                _question.lstrip(), "context:",
                _context.lstrip()
            ])

        inputs = [
            generate_input(question, context)
            for question, context in zip(questions, contexts)
        ]
        targets = [
            answer["text"][0] if len(answer["text"]) > 0 else ""
            for answer in answers
        ]
        return inputs, targets

    def preprocess_function(examples):
        inputs, targets = preprocess_squad_batch(examples, question_column,
                                                 context_column, answer_column)

        model_inputs = tokenizer(inputs,
                                 max_length=max_seq_length,
                                 padding=padding,
                                 truncation=True)
        # Tokenize targets with text_target=...
        labels = tokenizer(text_target=targets,
                           max_length=max_answer_length,
                           padding=padding,
                           truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    # Validation preprocessing
    def preprocess_validation_function(examples):
        inputs, targets = preprocess_squad_batch(examples, question_column,
                                                 context_column, answer_column)

        model_inputs = tokenizer(
            inputs,
            max_length=max_seq_length,
            padding=padding,
            truncation=True,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
        )
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets,
                           max_length=max_answer_length,
                           padding=padding,
                           truncation=True)

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = model_inputs.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        model_inputs["example_id"] = []

        for i in range(len(model_inputs["input_ids"])):
            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            model_inputs["example_id"].append(examples["id"][sample_index])

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            # We will select sample from whole data if agument is specified
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        # Create train feature from dataset
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_examples = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            # We will select sample from whole data
            max_eval_samples = min(len(eval_examples),
                                   data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
        # Validation Feature Creation
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
                preprocess_validation_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
        if data_args.max_eval_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    if training_args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_examples = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            # We will select sample from whole data
            predict_examples = predict_examples.select(
                range(data_args.max_predict_samples))
        # Predict Feature Creation
        with training_args.main_process_first(
                desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
                preprocess_validation_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
        if data_args.max_predict_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
            max_predict_samples = min(len(predict_dataset),
                                      data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(
                range(max_predict_samples))

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )

    metric = evaluate.load(
        "squad_v2" if data_args.version_2_with_negative else "squad")

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions,
                              references=p.label_ids)

    # Post-processing:
    def post_processing_function(examples: datasets.Dataset,
                                 features: datasets.Dataset,
                                 outputs: EvalLoopOutput,
                                 stage="eval"):
        # Decode the predicted tokens.
        preds = outputs.predictions
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

        # Build a map example to its corresponding features.
        example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
        feature_per_example = {
            example_id_to_index[feature["example_id"]]: i
            for i, feature in enumerate(features)
        }
        predictions = {}
        # Let's loop over all the examples!
        for example_index, example in enumerate(examples):
            # This is the index of the feature associated to the current example.
            feature_index = feature_per_example[example_index]
            predictions[example["id"]] = decoded_preds[feature_index]

        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v,
                "no_answer_probability": 0.0
            } for k, v in predictions.items()]
        else:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v
            } for k, v in predictions.items()]

        references = [{
            "id": ex["id"],
            "answers": ex[answer_column]
        } for ex in examples]
        return EvalPrediction(predictions=formatted_predictions,
                              label_ids=references)

    # Initialize our Trainer
    trainer = QuestionAnsweringSeq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        eval_examples=eval_examples if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
        post_process_function=post_processing_function,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    max_length = (training_args.generation_max_length
                  if training_args.generation_max_length is not None else
                  data_args.val_max_answer_length)
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(max_length=max_length,
                                   num_beams=num_beams,
                                   metric_key_prefix="eval")

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
        results = trainer.predict(predict_dataset, predict_examples)
        metrics = results.metrics

        max_predict_samples = (data_args.max_predict_samples
                               if data_args.max_predict_samples is not None
                               else len(predict_dataset))
        metrics["predict_samples"] = min(max_predict_samples,
                                         len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

    if training_args.push_to_hub:
        kwargs = {
            "finetuned_from": model_args.model_name_or_path,
            "tasks": "question-answering"
        }
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs[
                    "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)
def main():
    # Parse the arguments
    args = parse_args()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_translation_no_trainer", args)

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
    # in the environment
    accelerator = (
        Accelerator(log_with=args.report_to, logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForSeq2SeqLM.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForSeq2SeqLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Set decoder_start_token_id
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        assert (
            args.target_lang is not None and args.source_lang is not None
        ), "mBart requires --target_lang and --source_lang"
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(args.target_lang)

    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    prefix = args.source_prefix if args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
    if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if args.source_lang is not None:
            tokenizer.src_lang = args.source_lang
        if args.target_lang is not None:
            tokenizer.tgt_lang = args.target_lang

    # Get the language codes for input/target.
    source_lang = args.source_lang.split("_")[0]
    target_lang = args.target_lang.split("_")[0]

    padding = "max_length" if args.pad_to_max_length else False

    # Temporarily set max_target_length for training.
    max_target_length = args.max_target_length
    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True)

        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    with accelerator.main_process_first():
        processed_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if accelerator.use_fp16 else None,
        )

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
    )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration.
    # We initialize the trackers only on main process because `accelerator.log`
    # only logs on main process and we don't want empty logs/runs on other processes.
    if args.with_tracking:
        if accelerator.is_main_process:
            experiment_config = vars(args)
            # TensorBoard cannot log Enums, need the raw value
            experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
            accelerator.init_trackers("translation_no_trainer", experiment_config)

    metric = evaluate.load("sacrebleu")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [[label.strip()] for label in labels]

        return preds, labels

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[-1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            # need to multiply `gradient_accumulation_steps` to reflect real steps
            resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    # update the progress_bar if load from checkpoint
    progress_bar.update(starting_epoch * num_update_steps_per_epoch)
    completed_steps = starting_epoch * num_update_steps_per_epoch

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    if step % args.gradient_accumulation_steps == 0:
                        progress_bar.update(1)
                        completed_steps += 1
                    continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

            if completed_steps >= args.max_train_steps:
                break

        model.eval()

        if args.val_max_target_length is None:
            args.val_max_target_length = args.max_target_length

        gen_kwargs = {
            "max_length": args.val_max_target_length if args is not None else config.max_length,
            "num_beams": args.num_beams,
        }
        samples_seen = 0
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                generated_tokens = accelerator.unwrap_model(model).generate(
                    batch["input_ids"],
                    attention_mask=batch["attention_mask"],
                    **gen_kwargs,
                )

                generated_tokens = accelerator.pad_across_processes(
                    generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
                )
                labels = batch["labels"]
                if not args.pad_to_max_length:
                    # If we did not pad to max length, we need to pad the labels too
                    labels = accelerator.pad_across_processes(batch["labels"], dim=1, pad_index=tokenizer.pad_token_id)

                generated_tokens = accelerator.gather(generated_tokens).cpu().numpy()
                labels = accelerator.gather(labels).cpu().numpy()

                if args.ignore_pad_token_for_loss:
                    # Replace -100 in the labels as we can't decode them.
                    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)

                decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

                decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

                # If we are in a multiprocess environment, the last batch has duplicates
                if accelerator.num_processes > 1:
                    if step == len(eval_dataloader) - 1:
                        decoded_preds = decoded_preds[: len(eval_dataloader.dataset) - samples_seen]
                        decoded_labels = decoded_labels[: len(eval_dataloader.dataset) - samples_seen]
                    else:
                        samples_seen += len(decoded_labels)

                metric.add_batch(predictions=decoded_preds, references=decoded_labels)
        eval_metric = metric.compute()
        logger.info({"bleu": eval_metric["score"]})

        if args.with_tracking:
            accelerator.log(
                {
                    "bleu": eval_metric["score"],
                    "train_loss": total_loss.item() / len(train_dataloader),
                    "epoch": epoch,
                    "step": completed_steps,
                },
                step=completed_steps,
            )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
            )
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
                )

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
        )
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"eval_bleu": eval_metric["score"]}, f)
Exemplo n.º 9
0
def main():
    # region Argument Parsing
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner",
                           model_args,
                           data_args,
                           framework="tensorflow")
    # endregion

    # region Setup logging
    # we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_info()

    # If passed along, set the training seed now.
    if training_args.seed is not None:
        set_seed(training_args.seed)
    # endregion

    # region Loading datasets
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)
    # endregion

    # region Load config and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            num_labels=num_labels)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            num_labels=num_labels)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if not tokenizer_name_or_path:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path,
                                                  use_fast=True,
                                                  add_prefix_space=True)
    else:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path,
                                                  use_fast=True)
    # endregion

    # region Preprocessing the raw datasets
    # First we tokenize all the texts.
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.

    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            max_length=data_args.max_length,
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )

        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if data_args.
                                     label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    processed_raw_datasets = raw_datasets.map(
        tokenize_and_align_labels,
        batched=True,
        remove_columns=raw_datasets["train"].column_names,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

    if data_args.max_train_samples is not None:
        max_train_samples = min(len(train_dataset),
                                data_args.max_train_samples)
        train_dataset = train_dataset.select(range(max_train_samples))

    if data_args.max_eval_samples is not None:
        max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
        eval_dataset = eval_dataset.select(range(max_eval_samples))

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")
    # endregion

    with training_args.strategy.scope():
        # region Initialize model
        if model_args.model_name_or_path:
            model = TFAutoModelForTokenClassification.from_pretrained(
                model_args.model_name_or_path,
                config=config,
            )
        else:
            logger.info("Training new model from scratch")
            model = TFAutoModelForTokenClassification.from_config(config)

        model.resize_token_embeddings(len(tokenizer))
        # endregion

        # region Create TF datasets

        # We need the DataCollatorForTokenClassification here, as we need to correctly pad labels as
        # well as inputs.
        collate_fn = DataCollatorForTokenClassification(tokenizer=tokenizer,
                                                        return_tensors="tf")
        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas

        dataset_options = tf.data.Options()
        dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF

        # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
        # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
        # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
        # yourself if you use this method, whereas they are automatically inferred from the model input names when
        # using model.prepare_tf_dataset()
        # For more info see the docs:
        # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
        # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

        tf_train_dataset = model.prepare_tf_dataset(
            train_dataset,
            collate_fn=collate_fn,
            batch_size=total_train_batch_size,
            shuffle=True,
        ).with_options(dataset_options)
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
        tf_eval_dataset = model.prepare_tf_dataset(
            eval_dataset,
            collate_fn=collate_fn,
            batch_size=total_eval_batch_size,
            shuffle=False,
        ).with_options(dataset_options)

        # endregion

        # region Optimizer, loss and compilation
        num_train_steps = int(
            len(tf_train_dataset) * training_args.num_train_epochs)
        if training_args.warmup_steps > 0:
            num_warmup_steps = training_args.warmup_steps
        elif training_args.warmup_ratio > 0:
            num_warmup_steps = int(num_train_steps *
                                   training_args.warmup_ratio)
        else:
            num_warmup_steps = 0

        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate,
            num_train_steps=num_train_steps,
            num_warmup_steps=num_warmup_steps,
            adam_beta1=training_args.adam_beta1,
            adam_beta2=training_args.adam_beta2,
            adam_epsilon=training_args.adam_epsilon,
            weight_decay_rate=training_args.weight_decay,
            adam_global_clipnorm=training_args.max_grad_norm,
        )

        model.compile(optimizer=optimizer, jit_compile=training_args.xla)
        # endregion

        # Metrics
        metric = evaluate.load("seqeval")

        def get_labels(y_pred, y_true):
            # Transform predictions and references tensos to numpy arrays

            # Remove ignored index (special tokens)
            true_predictions = [[
                label_list[p] for (p, l) in zip(pred, gold_label) if l != -100
            ] for pred, gold_label in zip(y_pred, y_true)]
            true_labels = [[
                label_list[l] for (p, l) in zip(pred, gold_label) if l != -100
            ] for pred, gold_label in zip(y_pred, y_true)]
            return true_predictions, true_labels

        def compute_metrics():
            results = metric.compute()
            if data_args.return_entity_level_metrics:
                # Unpack nested dictionaries
                final_results = {}
                for key, value in results.items():
                    if isinstance(value, dict):
                        for n, v in value.items():
                            final_results[f"{key}_{n}"] = v
                    else:
                        final_results[key] = value
                return final_results
            else:
                return {
                    "precision": results["overall_precision"],
                    "recall": results["overall_recall"],
                    "f1": results["overall_f1"],
                    "accuracy": results["overall_accuracy"],
                }

        # endregion

        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            if data_args.dataset_name is not None:
                push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}"
            else:
                push_to_hub_model_id = f"{model_name}-finetuned-token-classification"

        model_card_kwargs = {
            "finetuned_from": model_args.model_name_or_path,
            "tasks": "token-classification"
        }
        if data_args.dataset_name is not None:
            model_card_kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                model_card_kwargs[
                    "dataset_args"] = data_args.dataset_config_name
                model_card_kwargs[
                    "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                model_card_kwargs["dataset"] = data_args.dataset_name

        if training_args.push_to_hub:
            callbacks = [
                PushToHubCallback(
                    output_dir=training_args.output_dir,
                    model_id=push_to_hub_model_id,
                    organization=training_args.push_to_hub_organization,
                    token=training_args.push_to_hub_token,
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            ]
        else:
            callbacks = []
        # endregion

        # region Training
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
        logger.info(
            f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
        )
        logger.info(f"  Total train batch size = {total_train_batch_size}")
        # Only show the progress bar once on each machine.

        model.fit(
            tf_train_dataset,
            validation_data=tf_eval_dataset,
            epochs=int(training_args.num_train_epochs),
            callbacks=callbacks,
        )
        # endregion

        # region Predictions
        # If you have variable batch sizes (i.e. not using pad_to_max_length), then
        # this bit might fail on TF < 2.8 because TF can't concatenate outputs of varying seq
        # length from predict().

        try:
            predictions = model.predict(
                tf_eval_dataset,
                batch_size=training_args.per_device_eval_batch_size)["logits"]
        except tf.python.framework.errors_impl.InvalidArgumentError:
            raise ValueError(
                "Concatenating predictions failed! If your version of TensorFlow is 2.8.0 or older "
                "then you will need to use --pad_to_max_length to generate predictions, as older "
                "versions of TensorFlow cannot concatenate variable-length predictions as RaggedTensor."
            )
        if isinstance(predictions, tf.RaggedTensor):
            predictions = predictions.to_tensor(default_value=-100)
        predictions = tf.math.argmax(predictions, axis=-1).numpy()
        if "label" in eval_dataset:
            labels = eval_dataset.with_format("tf")["label"]
        else:
            labels = eval_dataset.with_format("tf")["labels"]
        if isinstance(labels, tf.RaggedTensor):
            labels = labels.to_tensor(default_value=-100)
        labels = labels.numpy()
        attention_mask = eval_dataset.with_format("tf")["attention_mask"]
        if isinstance(attention_mask, tf.RaggedTensor):
            attention_mask = attention_mask.to_tensor(default_value=-100)
        attention_mask = attention_mask.numpy()
        labels[attention_mask == 0] = -100
        preds, refs = get_labels(predictions, labels)
        metric.add_batch(
            predictions=preds,
            references=refs,
        )
        eval_metric = compute_metrics()
        logger.info("Evaluation metrics:")
        for key, val in eval_metric.items():
            logger.info(f"{key}: {val:.4f}")

        if training_args.output_dir is not None:
            output_eval_file = os.path.join(training_args.output_dir,
                                            "all_results.json")
            with open(output_eval_file, "w") as writer:
                writer.write(json.dumps(eval_metric))
        # endregion

    if training_args.output_dir is not None and not training_args.push_to_hub:
        # If we're not pushing to hub, at least save a local copy when we're done
        model.save_pretrained(training_args.output_dir)
Exemplo n.º 10
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_qa_beam_search", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            field="data",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = XLNetConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = XLNetTokenizerFast.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = XLNetForQuestionAnswering.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    else:
        column_names = raw_datasets["test"].column_names
    question_column_name = "question" if "question" in column_names else column_names[
        0]
    context_column_name = "context" if "context" in column_names else column_names[
        1]
    answer_column_name = "answers" if "answers" in column_names else column_names[
        2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Training preprocessing
    def prepare_train_features(examples):
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [
            q.lstrip() for q in examples[question_column_name]
        ]

        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            return_special_tokens_mask=True,
            return_token_type_ids=True,
            padding="max_length",
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")
        # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers).
        special_tokens = tokenized_examples.pop("special_tokens_mask")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []
        tokenized_examples["is_impossible"] = []
        tokenized_examples["cls_index"] = []
        tokenized_examples["p_mask"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)
            tokenized_examples["cls_index"].append(cls_index)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples["token_type_ids"][i]
            for k, s in enumerate(special_tokens[i]):
                if s:
                    sequence_ids[k] = 3
            context_idx = 1 if pad_on_right else 0

            # Build the p_mask: non special tokens and context gets 0.0, the others get 1.0.
            # The cls token gets 1.0 too (for predictions of empty answers).
            tokenized_examples["p_mask"].append([
                0.0 if (not special_tokens[i][k] and s == context_idx)
                or k == cls_index else 1.0 for k, s in enumerate(sequence_ids)
            ])

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
                tokenized_examples["is_impossible"].append(1.0)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != context_idx:
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != context_idx:
                    token_end_index -= 1
                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char
                        and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                    tokenized_examples["is_impossible"].append(1.0)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[
                            token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(
                        token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(
                        token_end_index + 1)
                    tokenized_examples["is_impossible"].append(0.0)

        return tokenized_examples

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            # Select samples from Dataset, This will help to decrease processing time
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        # Create Training Features
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                prepare_train_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
        if data_args.max_train_samples is not None:
            # Select samples from dataset again since Feature Creation might increase number of features
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    # Validation preprocessing
    def prepare_validation_features(examples):
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            return_special_tokens_mask=True,
            return_token_type_ids=True,
            padding="max_length",
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers).
        special_tokens = tokenized_examples.pop("special_tokens_mask")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        # We still provide the index of the CLS token and the p_mask to the model, but not the is_impossible label.
        tokenized_examples["cls_index"] = []
        tokenized_examples["p_mask"] = []

        for i, input_ids in enumerate(tokenized_examples["input_ids"]):
            # Find the CLS token in the input ids.
            cls_index = input_ids.index(tokenizer.cls_token_id)
            tokenized_examples["cls_index"].append(cls_index)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples["token_type_ids"][i]
            for k, s in enumerate(special_tokens[i]):
                if s:
                    sequence_ids[k] = 3
            context_idx = 1 if pad_on_right else 0

            # Build the p_mask: non special tokens and context gets 0.0, the others 1.0.
            tokenized_examples["p_mask"].append([
                0.0 if (not special_tokens[i][k] and s == context_idx)
                or k == cls_index else 1.0 for k, s in enumerate(sequence_ids)
            ])

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(
                examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_idx else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_examples = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            # Selecting Eval Samples from Dataset
            max_eval_samples = min(len(eval_examples),
                                   data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
        # Create Features from Eval Dataset
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
        if data_args.max_eval_samples is not None:
            # Selecting Samples from Dataset again since Feature Creation might increase samples size
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    if training_args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_examples = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            # We will select sample from whole data
            predict_examples = predict_examples.select(
                range(data_args.max_predict_samples))
        # Test Feature Creation
        with training_args.main_process_first(
                desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
        if data_args.max_predict_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
            max_predict_samples = min(len(predict_dataset),
                                      data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(
                range(max_predict_samples))

    # Data collator
    # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
    # collator.
    data_collator = (default_data_collator if data_args.pad_to_max_length else
                     DataCollatorWithPadding(
                         tokenizer,
                         pad_to_multiple_of=8 if training_args.fp16 else None))

    # Post-processing:
    def post_processing_function(examples,
                                 features,
                                 predictions,
                                 stage="eval"):
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions, scores_diff_json = postprocess_qa_predictions_with_beam_search(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=data_args.version_2_with_negative,
            n_best_size=data_args.n_best_size,
            max_answer_length=data_args.max_answer_length,
            start_n_top=model.config.start_n_top,
            end_n_top=model.config.end_n_top,
            output_dir=training_args.output_dir,
            log_level=log_level,
            prefix=stage,
        )
        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [{
                "id":
                k,
                "prediction_text":
                v,
                "no_answer_probability":
                scores_diff_json[k]
            } for k, v in predictions.items()]
        else:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v
            } for k, v in predictions.items()]

        references = [{
            "id": ex["id"],
            "answers": ex[answer_column_name]
        } for ex in examples]
        return EvalPrediction(predictions=formatted_predictions,
                              label_ids=references)

    metric = evaluate.load(
        "squad_v2" if data_args.version_2_with_negative else "squad")

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions,
                              references=p.label_ids)

    # Initialize our Trainer
    trainer = QuestionAnsweringTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        eval_examples=eval_examples if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        post_process_function=post_processing_function,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
        results = trainer.predict(predict_dataset, predict_examples)
        metrics = results.metrics

        max_predict_samples = (data_args.max_predict_samples
                               if data_args.max_predict_samples is not None
                               else len(predict_dataset))
        metrics["predict_samples"] = min(max_predict_samples,
                                         len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "question-answering"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Exemplo n.º 11
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature,
                                ClassLabel)
    if labels_are_int:
        label_list = features[label_column_name].feature.names
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}

    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    model = AutoModelForTokenClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement")

    # Model has labels -> use them.
    if model.config.label2id != PretrainedConfig(
            num_labels=num_labels).label2id:
        if list(sorted(model.config.label2id.keys())) == list(
                sorted(label_list)):
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {
                    i: int(model.config.label2id[l])
                    for i, l in enumerate(label_list)
                }
                label_list = [
                    model.config.id2label[i] for i in range(num_labels)
                ]
            else:
                label_list = [
                    model.config.id2label[i] for i in range(num_labels)
                ]
                label_to_id = {l: i for i, l in enumerate(label_list)}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(model.config.label2id.keys()))}, dataset labels:"
                f" {list(sorted(label_list))}.\nIgnoring the model labels as a result.",
            )

    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
    model.config.id2label = {i: l for i, l in enumerate(label_list)}

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            max_length=data_args.max_seq_length,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )
        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    if data_args.label_all_tokens:
                        label_ids.append(
                            b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )

    if training_args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset),
                                      data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(
                range(max_predict_samples))
        with training_args.main_process_first(
                desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    # Data collator
    data_collator = DataCollatorForTokenClassification(
        tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)

    # Metrics
    metric = evaluate.load("seqeval")

    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]
        true_labels = [[
            label_list[l] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        results = metric.compute(predictions=true_predictions,
                                 references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        trainer.save_model()  # Saves the tokenizer too for easy upload

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Predict
    if training_args.do_predict:
        logger.info("*** Predict ***")

        predictions, labels, metrics = trainer.predict(
            predict_dataset, metric_key_prefix="predict")
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        # Save predictions
        output_predictions_file = os.path.join(training_args.output_dir,
                                               "predictions.txt")
        if trainer.is_world_process_zero():
            with open(output_predictions_file, "w") as writer:
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "token-classification"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Exemplo n.º 12
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_speech_recognition_ctc", model_args, data_args)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 1. First, let's load the dataset
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.train_split_name,
            use_auth_token=data_args.use_auth_token,
        )

        if data_args.audio_column_name not in raw_datasets[
                "train"].column_names:
            raise ValueError(
                f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
                " Make sure to set `--audio_column_name` to the correct audio column - one of"
                f" {', '.join(raw_datasets['train'].column_names)}.")

        if data_args.text_column_name not in raw_datasets[
                "train"].column_names:
            raise ValueError(
                f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--text_column_name` to the correct text column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}.")

        if data_args.max_train_samples is not None:
            raw_datasets["train"] = raw_datasets["train"].select(
                range(data_args.max_train_samples))

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.eval_split_name,
            use_auth_token=data_args.use_auth_token,
        )

        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = raw_datasets["eval"].select(
                range(data_args.max_eval_samples))

    # 2. We remove some special characters from the datasets
    # that make training complicated and do not help in transcribing the speech
    # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
    # that could be easily picked up by the model
    chars_to_ignore_regex = (f'[{"".join(data_args.chars_to_ignore)}]' if
                             data_args.chars_to_ignore is not None else None)
    text_column_name = data_args.text_column_name

    def remove_special_characters(batch):
        if chars_to_ignore_regex is not None:
            batch["target_text"] = re.sub(
                chars_to_ignore_regex, "",
                batch[text_column_name]).lower() + " "
        else:
            batch["target_text"] = batch[text_column_name].lower() + " "
        return batch

    with training_args.main_process_first(
            desc="dataset map special characters removal"):
        raw_datasets = raw_datasets.map(
            remove_special_characters,
            remove_columns=[text_column_name],
            desc="remove special characters from datasets",
        )

    # save special tokens for tokenizer
    word_delimiter_token = data_args.word_delimiter_token
    unk_token = data_args.unk_token
    pad_token = data_args.pad_token

    # 3. Next, let's load the config as we might need it to create
    # the tokenizer
    # load config
    config = AutoConfig.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token)

    # 4. Next, if no tokenizer file is defined,
    # we create the vocabulary of the model by extracting all unique characters from
    # the training and evaluation datasets
    # We need to make sure that only first rank saves vocabulary
    # make sure all processes wait until vocab is created
    tokenizer_name_or_path = model_args.tokenizer_name_or_path
    tokenizer_kwargs = {}
    if tokenizer_name_or_path is None:
        # save vocab in training output dir
        tokenizer_name_or_path = training_args.output_dir

        vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")

        with training_args.main_process_first():
            if training_args.overwrite_output_dir and os.path.isfile(
                    vocab_file):
                try:
                    os.remove(vocab_file)
                except OSError:
                    # in shared file-systems it might be the case that
                    # two processes try to delete the vocab file at the some time
                    pass

        with training_args.main_process_first(
                desc="dataset map vocabulary creation"):
            if not os.path.isfile(vocab_file):
                os.makedirs(tokenizer_name_or_path, exist_ok=True)
                vocab_dict = create_vocabulary_from_data(
                    raw_datasets,
                    word_delimiter_token=word_delimiter_token,
                    unk_token=unk_token,
                    pad_token=pad_token,
                )

                # save vocab dict to be loaded into tokenizer
                with open(vocab_file, "w") as file:
                    json.dump(vocab_dict, file)

        # if tokenizer has just been created
        # it is defined by `tokenizer_class` if present in config else by `model_type`
        tokenizer_kwargs = {
            "config":
            config if config.tokenizer_class is not None else None,
            "tokenizer_type":
            config.model_type if config.tokenizer_class is None else None,
            "unk_token":
            unk_token,
            "pad_token":
            pad_token,
            "word_delimiter_token":
            word_delimiter_token,
        }

    # 5. Now we can instantiate the feature extractor, tokenizer and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.

    # load feature_extractor and tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_name_or_path,
        use_auth_token=data_args.use_auth_token,
        **tokenizer_kwargs,
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token)

    # adapt config
    config.update({
        "feat_proj_dropout": model_args.feat_proj_dropout,
        "attention_dropout": model_args.attention_dropout,
        "hidden_dropout": model_args.hidden_dropout,
        "final_dropout": model_args.final_dropout,
        "mask_time_prob": model_args.mask_time_prob,
        "mask_time_length": model_args.mask_time_length,
        "mask_feature_prob": model_args.mask_feature_prob,
        "mask_feature_length": model_args.mask_feature_length,
        "gradient_checkpointing": training_args.gradient_checkpointing,
        "layerdrop": model_args.layerdrop,
        "ctc_loss_reduction": model_args.ctc_loss_reduction,
        "pad_token_id": tokenizer.pad_token_id,
        "vocab_size": len(tokenizer),
        "activation_dropout": model_args.activation_dropout,
    })

    # create model
    model = AutoModelForCTC.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        config=config,
        use_auth_token=data_args.use_auth_token,
    )

    # freeze encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`

    # make sure that dataset decodes audio with correct sampling rate
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[
        data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name,
            datasets.features.Audio(
                sampling_rate=feature_extractor.sampling_rate))

    # derive max & min input length for sample rate & max duration
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers

    # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
    phoneme_language = data_args.phoneme_language

    # Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    def prepare_dataset(batch):
        # load audio
        sample = batch[audio_column_name]

        inputs = feature_extractor(sample["array"],
                                   sampling_rate=sample["sampling_rate"])
        batch["input_values"] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # encode targets
        additional_kwargs = {}
        if phoneme_language is not None:
            additional_kwargs["phonemizer_lang"] = phoneme_language

        batch["labels"] = tokenizer(batch["target_text"],
                                    **additional_kwargs).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

        def is_audio_in_length_range(length):
            return length > min_input_length and length < max_input_length

        # filter data that is shorter than min_input_length
        vectorized_datasets = vectorized_datasets.filter(
            is_audio_in_length_range,
            num_proc=num_workers,
            input_columns=["input_length"],
        )

    # 7. Next, we can prepare the training.
    # Let's use word error rate (WER) as our evaluation metric,
    # instantiate a data collator and the trainer

    # Define evaluation metrics during training, *i.e.* word error rate, character error rate
    eval_metrics = {
        metric: evaluate.load(metric)
        for metric in data_args.eval_metrics
    }

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        logger.info(
            f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
        )
        return

    def compute_metrics(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)

        metrics = {
            k: v.compute(predictions=pred_str, references=label_str)
            for k, v in eval_metrics.items()
        }

        return metrics

    # Now save everything to be able to create a single processor later
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)

    try:
        processor = AutoProcessor.from_pretrained(training_args.output_dir)
    except (OSError, KeyError):
        warnings.warn(
            "Loading a processor from a feature extractor config that does not"
            " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
            " attribute to your `preprocessor_config.json` file to suppress this warning: "
            " `'processor_class': 'Wav2Vec2Processor'`",
            FutureWarning,
        )
        processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)

    # Instantiate custom data collator
    data_collator = DataCollatorCTCWithPadding(processor=processor)

    # Initialize Trainer
    trainer = Trainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=vectorized_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"]
        if training_args.do_eval else None,
        tokenizer=feature_extractor,
    )

    # 8. Finally, we can start training

    # Training
    if training_args.do_train:

        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else len(
                                vectorized_datasets["eval"]))
        metrics["eval_samples"] = min(max_eval_samples,
                                      len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
    kwargs = {
        "finetuned_from":
        model_args.model_name_or_path,
        "tasks":
        "speech-recognition",
        "tags": ["automatic-speech-recognition", data_args.dataset_name],
        "dataset_args":
        (f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
         f" {data_args.eval_split_name}"),
        "dataset":
        f"{data_args.dataset_name.upper()} - {config_name.upper()}",
    }
    if "common_voice" in data_args.dataset_name:
        kwargs["language"] = config_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_summarization",
                           model_args,
                           data_args,
                           framework="flax")

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() ==
                    0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(
                training_args.output_dir).absolute().name,
                                           token=training_args.hub_token)
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            keep_in_memory=False,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        dataset = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    if model_args.config_name:
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        model = FlaxAutoModelForSeq2SeqLM.from_config(
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
        )

    if training_args.gradient_checkpointing:
        model.enable_gradient_checkpointing()

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = dataset["train"].column_names
    elif training_args.do_eval:
        column_names = dataset["validation"].column_names
    elif training_args.do_predict:
        column_names = dataset["test"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
        )
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name,
                                                     None)
    if data_args.text_column is None:
        text_column = dataset_columns[
            0] if dataset_columns is not None else column_names[0]
    else:
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[
            1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length

    # In Flax, for seq2seq models we need to pass `decoder_input_ids`
    # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
    # for that dynamically import the `shift_tokens_right` function from the model file
    model_module = __import__(model.__module__,
                              fromlist=["shift_tokens_tight"])
    shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")

    # Setting padding="max_length" as we need fixed length inputs for jitted functions
    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs,
                                 max_length=data_args.max_source_length,
                                 padding="max_length",
                                 truncation=True,
                                 return_tensors="np")

        # Setup the tokenizer for targets
        labels = tokenizer(
            text_target=targets,
            max_length=max_target_length,
            padding="max_length",
            truncation=True,
            return_tensors="np",
        )

        model_inputs["labels"] = labels["input_ids"]
        decoder_input_ids = shift_tokens_right_fn(
            labels["input_ids"], config.pad_token_id,
            config.decoder_start_token_id)
        model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)

        # We need decoder_attention_mask so we can ignore pad tokens from loss
        model_inputs["decoder_attention_mask"] = labels["attention_mask"]

        return model_inputs

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = dataset["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = dataset["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in dataset:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = dataset["test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset),
                                      data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(
                range(max_predict_samples))
        predict_dataset = predict_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on prediction dataset",
        )

    # Metric
    metric = evaluate.load("rouge")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    def compute_metrics(preds, labels):
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        decoded_labels = tokenizer.batch_decode(labels,
                                                skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds, decoded_labels = postprocess_text(
            decoded_preds, decoded_labels)

        result = metric.compute(predictions=decoded_preds,
                                references=decoded_labels,
                                use_stemmer=True)
        result = {k: round(v * 100, 4) for k, v in result.items()}
        prediction_lens = [
            np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds
        ]
        result["gen_len"] = np.mean(prediction_lens)
        return result

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(
                log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable.")

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(
        training_args.per_device_train_batch_size) * jax.device_count()
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
        layer_norm_named_params = set([
            layer[-2:] for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        ])
        flat_mask = {
            path: (path[-1] != "bias"
                   and path[-2:] not in layer_norm_named_params)
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__,
                              params=model.params,
                              tx=adamw,
                              dropout_rng=dropout_rng)

    # label smoothed cross entropy
    def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
        """
        The label smoothing implementation is adapted from Flax's official example:
        https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
        """
        vocab_size = logits.shape[-1]
        confidence = 1.0 - label_smoothing_factor
        low_confidence = (1.0 - confidence) / (vocab_size - 1)
        normalizing_constant = -(confidence * jnp.log(confidence) +
                                 (vocab_size - 1) * low_confidence *
                                 jnp.log(low_confidence + 1e-20))
        soft_labels = onehot(labels,
                             vocab_size,
                             on_value=confidence,
                             off_value=low_confidence)

        loss = optax.softmax_cross_entropy(logits, soft_labels)
        loss = loss - normalizing_constant

        # ignore padded tokens from loss
        loss = loss * padding_mask
        loss = loss.sum() / padding_mask.sum()
        return loss

    # Define gradient update step fn
    def train_step(state, batch, label_smoothing_factor=0.0):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch,
                                    params=params,
                                    dropout_rng=dropout_rng,
                                    train=True)[0]
            loss = loss_fn(logits, labels, batch["decoder_attention_mask"],
                           label_smoothing_factor)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad,
                                          dropout_rng=new_dropout_rng)

        metrics = {
            "loss": loss,
            "learning_rate": linear_decay_lr_schedule_fn(state.step)
        }
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch, label_smoothing_factor=0.0):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels, batch["decoder_attention_mask"],
                       label_smoothing_factor)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Define generation function
    max_length = (data_args.val_max_target_length
                  if data_args.val_max_target_length is not None else
                  model.config.max_length)
    num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
    gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

    def generate_step(params, batch):
        model.params = params
        output_ids = model.generate(batch["input_ids"],
                                    attention_mask=batch["attention_mask"],
                                    **gen_kwargs)
        return output_ids.sequences

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(partial(
        train_step,
        label_smoothing_factor=training_args.label_smoothing_factor),
                            "batch",
                            donate_argnums=(0, ))
    p_eval_step = jax.pmap(
        partial(eval_step,
                label_smoothing_factor=training_args.label_smoothing_factor),
        "batch")
    p_generate_step = jax.pmap(generate_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    epochs = tqdm(range(num_epochs),
                  desc=f"Epoch ... (1/{num_epochs})",
                  position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)
        train_metrics = []

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng,
                                   train_dataset,
                                   train_batch_size,
                                   shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
        for _ in tqdm(range(steps_per_epoch),
                      desc="Training...",
                      position=1,
                      leave=False):
            batch = next(train_loader)
            batch = shard(batch)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

        train_time += time.time() - train_start

        train_metric = unreplicate(train_metric)

        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:"
            f" {train_metric['learning_rate']})")

        # ======================== Evaluating ==============================
        eval_metrics = []
        eval_preds = []
        eval_labels = []

        eval_loader = data_loader(input_rng,
                                  eval_dataset,
                                  eval_batch_size,
                                  drop_last=False)
        eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
        for _ in tqdm(range(eval_steps),
                      desc="Evaluating...",
                      position=2,
                      leave=False):
            # Model forward
            batch = next(eval_loader)
            labels = batch["labels"]

            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params,
                batch,
                min_device_batch=per_device_eval_batch_size)
            eval_metrics.append(metrics)

            # generation
            if data_args.predict_with_generate:
                generated_ids = pad_shard_unpad(p_generate_step)(state.params,
                                                                 batch)
                eval_preds.extend(
                    jax.device_get(
                        generated_ids.reshape(-1, gen_kwargs["max_length"])))
                eval_labels.extend(labels)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

        # compute ROUGE metrics
        rouge_desc = ""
        if data_args.predict_with_generate:
            rouge_metrics = compute_metrics(eval_preds, eval_labels)
            eval_metrics.update(rouge_metrics)
            rouge_desc = " ".join([
                f"Eval {key}: {value} |"
                for key, value in rouge_metrics.items()
            ])

        # Print metrics and update progress bar
        desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
        epochs.write(desc)
        epochs.desc = desc

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(train_dataset) // train_batch_size)
            write_metric(summary_writer, train_metrics, eval_metrics,
                         train_time, cur_step)

        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
            model.save_pretrained(training_args.output_dir, params=params)
            tokenizer.save_pretrained(training_args.output_dir)
            if training_args.push_to_hub:
                repo.push_to_hub(
                    commit_message=f"Saving weights and logs of epoch {epoch}",
                    blocking=False)

    # ======================== Prediction loop ==============================
    if training_args.do_predict:
        logger.info("*** Predict ***")

        pred_metrics = []
        pred_generations = []
        pred_labels = []

        pred_loader = data_loader(input_rng,
                                  predict_dataset,
                                  eval_batch_size,
                                  drop_last=False)
        pred_steps = math.ceil(len(predict_dataset) / eval_batch_size)
        for _ in tqdm(range(pred_steps),
                      desc="Predicting...",
                      position=2,
                      leave=False):
            # Model forward
            batch = next(pred_loader)
            labels = batch["labels"]

            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params,
                batch,
                min_device_batch=per_device_eval_batch_size)
            pred_metrics.append(metrics)

            # generation
            if data_args.predict_with_generate:
                generated_ids = pad_shard_unpad(p_generate_step)(state.params,
                                                                 batch)
                pred_generations.extend(
                    jax.device_get(
                        generated_ids.reshape(-1, gen_kwargs["max_length"])))
                pred_labels.extend(labels)

        # normalize prediction metrics
        pred_metrics = get_metrics(pred_metrics)
        pred_metrics = jax.tree_map(jnp.mean, pred_metrics)

        # compute ROUGE metrics
        rouge_desc = ""
        if data_args.predict_with_generate:
            rouge_metrics = compute_metrics(pred_generations, pred_labels)
            pred_metrics.update(rouge_metrics)
            rouge_desc = " ".join([
                f"Predict {key}: {value} |"
                for key, value in rouge_metrics.items()
            ])

        # Print metrics
        desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
        logger.info(desc)

        # save final metrics in json
        if jax.process_index() == 0:
            rouge_metrics = {
                f"test_{metric_name}": value
                for metric_name, value in rouge_metrics.items()
            }
            path = os.path.join(training_args.output_dir, "test_results.json")
            with open(path, "w") as f:
                json.dump(rouge_metrics, f, indent=4, sort_keys=True)
Exemplo n.º 14
0
def main():
    # region Argument Parsing
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner",
                           model_args,
                           data_args,
                           framework="tensorflow")
    # endregion

    # region Setup logging
    # we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_info()

    # If passed along, set the training seed now.
    if training_args.seed is not None:
        set_seed(training_args.seed)
    # endregion

    # region Loading datasets
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)
    # endregion

    # region Load config and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            num_labels=num_labels)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            num_labels=num_labels)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if not tokenizer_name_or_path:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path,
                                                  use_fast=True,
                                                  add_prefix_space=True)
    else:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path,
                                                  use_fast=True)
    # endregion

    # region Preprocessing the raw datasets
    # First we tokenize all the texts.
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.

    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            max_length=data_args.max_length,
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )

        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if data_args.
                                     label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    processed_raw_datasets = raw_datasets.map(
        tokenize_and_align_labels,
        batched=True,
        remove_columns=raw_datasets["train"].column_names,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")
    # endregion

    with training_args.strategy.scope():
        # region Initialize model
        if model_args.model_name_or_path:
            model = TFAutoModelForTokenClassification.from_pretrained(
                model_args.model_name_or_path,
                config=config,
            )
        else:
            logger.info("Training new model from scratch")
            model = TFAutoModelForTokenClassification.from_config(config)

        model.resize_token_embeddings(len(tokenizer))
        # endregion

        # region Create TF datasets
        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
        train_batches_per_epoch = len(train_dataset) // total_train_batch_size
        tf_train_dataset = dataset_to_tf(
            train_dataset,
            tokenizer,
            total_batch_size=total_train_batch_size,
            num_epochs=training_args.num_train_epochs,
            shuffle=True,
        )
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
        eval_batches_per_epoch = len(eval_dataset) // total_eval_batch_size
        tf_eval_dataset = dataset_to_tf(
            eval_dataset,
            tokenizer,
            total_batch_size=total_eval_batch_size,
            num_epochs=training_args.num_train_epochs,
            shuffle=False,
        )

        # endregion

        # region Optimizer, loss and compilation
        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate,
            num_train_steps=int(training_args.num_train_epochs *
                                train_batches_per_epoch),
            num_warmup_steps=training_args.warmup_steps,
            adam_beta1=training_args.adam_beta1,
            adam_beta2=training_args.adam_beta2,
            adam_epsilon=training_args.adam_epsilon,
            weight_decay_rate=training_args.weight_decay,
        )

        def dummy_loss(y_true, y_pred):
            return tf.reduce_mean(y_pred)

        model.compile(loss={"loss": dummy_loss}, optimizer=optimizer)
        # endregion

        # Metrics
        metric = evaluate.load("seqeval")

        def get_labels(y_pred, y_true):
            # Transform predictions and references tensos to numpy arrays

            # Remove ignored index (special tokens)
            true_predictions = [[
                label_list[p] for (p, l) in zip(pred, gold_label) if l != -100
            ] for pred, gold_label in zip(y_pred, y_true)]
            true_labels = [[
                label_list[l] for (p, l) in zip(pred, gold_label) if l != -100
            ] for pred, gold_label in zip(y_pred, y_true)]
            return true_predictions, true_labels

        def compute_metrics():
            results = metric.compute()
            if data_args.return_entity_level_metrics:
                # Unpack nested dictionaries
                final_results = {}
                for key, value in results.items():
                    if isinstance(value, dict):
                        for n, v in value.items():
                            final_results[f"{key}_{n}"] = v
                    else:
                        final_results[key] = value
                return final_results
            else:
                return {
                    "precision": results["overall_precision"],
                    "recall": results["overall_recall"],
                    "f1": results["overall_f1"],
                    "accuracy": results["overall_accuracy"],
                }

        # endregion

        # region Training
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
        logger.info(
            f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
        )
        logger.info(f"  Total train batch size = {total_train_batch_size}")
        # Only show the progress bar once on each machine.
        model.fit(
            tf_train_dataset,
            validation_data=tf_eval_dataset,
            epochs=int(training_args.num_train_epochs),
            steps_per_epoch=train_batches_per_epoch,
            validation_steps=eval_batches_per_epoch,
        )
        # endregion

        # region Predictions
        # For predictions, we preload the entire validation set - note that if you have a really giant validation
        # set, you might need to change this!
        eval_inputs = {
            key: tf.ragged.constant(eval_dataset[key]).to_tensor()
            for key in eval_dataset.features
        }
        predictions = model.predict(
            eval_inputs,
            batch_size=training_args.per_device_eval_batch_size)["logits"]
        predictions = tf.math.argmax(predictions, axis=-1)
        labels = np.array(eval_inputs["labels"])
        labels[np.array(eval_inputs["attention_mask"]) == 0] = -100
        preds, refs = get_labels(predictions, labels)
        metric.add_batch(
            predictions=preds,
            references=refs,
        )
        eval_metric = compute_metrics()
        logger.info("Evaluation metrics:")
        for key, val in eval_metric.items():
            logger.info(f"{key}: {val:.4f}")
        # endregion

    # We don't do predictions in the strategy scope because there are some issues in there right now.
    # They'll get fixed eventually, promise!

    if training_args.output_dir is not None:
        model.save_pretrained(training_args.output_dir)
Exemplo n.º 15
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args, framework="flax")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() ==
                    0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(
                training_args.output_dir).absolute().name,
                                           token=training_args.hub_token)
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = (data_args.train_file if data_args.train_file is not None
                     else data_args.valid_file).split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        label2id=label_to_id,
        id2label={i: l
                  for l, i in label_to_id.items()},
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    model = FlaxAutoModelForTokenClassification.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Preprocessing the datasets
    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            max_length=data_args.max_seq_length,
            padding="max_length",
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )

        labels = []

        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if data_args.
                                     label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    processed_raw_datasets = raw_datasets.map(
        tokenize_and_align_labels,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
        remove_columns=raw_datasets["train"].column_names,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # Define a summary writer
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(training_args.output_dir)
            summary_writer.hparams({
                **training_args.to_dict(),
                **vars(model_args),
                **vars(data_args)
            })
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable.")

    def write_train_metric(summary_writer, train_metrics, train_time, step):
        summary_writer.scalar("train_time", train_time, step)

        train_metrics = get_metrics(train_metrics)
        for key, vals in train_metrics.items():
            tag = f"train_{key}"
            for i, val in enumerate(vals):
                summary_writer.scalar(tag, val, step - len(vals) + i + 1)

    def write_eval_metric(summary_writer, eval_metrics, step):
        for metric_name, value in eval_metrics.items():
            summary_writer.scalar(f"eval_{metric_name}", value, step)

    num_epochs = int(training_args.num_train_epochs)
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

    train_batch_size = training_args.per_device_train_batch_size * jax.local_device_count(
    )
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = training_args.per_device_eval_batch_size * jax.local_device_count(
    )

    learning_rate_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    state = create_train_state(model,
                               learning_rate_fn,
                               num_labels=num_labels,
                               training_args=training_args)

    # define step functions
    def train_step(
            state: train_state.TrainState, batch: Dict[str, Array],
            dropout_rng: PRNGKey) -> Tuple[train_state.TrainState, float]:
        """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
        targets = batch.pop("labels")

        def loss_fn(params):
            logits = state.apply_fn(**batch,
                                    params=params,
                                    dropout_rng=dropout_rng,
                                    train=True)[0]
            loss = state.loss_fn(logits, targets)
            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)
        metrics = jax.lax.pmean(
            {
                "loss": loss,
                "learning_rate": learning_rate_fn(state.step)
            },
            axis_name="batch")
        return new_state, metrics, new_dropout_rng

    p_train_step = jax.pmap(train_step,
                            axis_name="batch",
                            donate_argnums=(0, ))

    def eval_step(state, batch):
        logits = state.apply_fn(**batch, params=state.params, train=False)[0]
        return state.logits_fn(logits)

    p_eval_step = jax.pmap(eval_step, axis_name="batch")

    metric = evaluate.load("seqeval")

    def get_labels(y_pred, y_true):
        # Transform predictions and references tensos to numpy arrays

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(pred, gold_label) if l != -100
        ] for pred, gold_label in zip(y_pred, y_true)]
        true_labels = [[
            label_list[l] for (p, l) in zip(pred, gold_label) if l != -100
        ] for pred, gold_label in zip(y_pred, y_true)]
        return true_predictions, true_labels

    def compute_metrics():
        results = metric.compute()
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    logger.info(f"===== Starting training ({num_epochs} epochs) =====")
    train_time = 0

    # make sure weights are replicated on each device
    state = replicate(state)

    train_time = 0
    step_per_epoch = len(train_dataset) // train_batch_size
    total_steps = step_per_epoch * num_epochs
    epochs = tqdm(range(num_epochs),
                  desc=f"Epoch ... (1/{num_epochs})",
                  position=0)
    for epoch in epochs:

        train_start = time.time()
        train_metrics = []

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # train
        for step, batch in enumerate(
                tqdm(
                    train_data_collator(input_rng, train_dataset,
                                        train_batch_size),
                    total=step_per_epoch,
                    desc="Training...",
                    position=1,
                )):
            state, train_metric, dropout_rngs = p_train_step(
                state, batch, dropout_rngs)
            train_metrics.append(train_metric)

            cur_step = (epoch * step_per_epoch) + (step + 1)

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics,
                                       train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})")

                train_metrics = []

            if cur_step % training_args.eval_steps == 0 and cur_step > 0:

                eval_metrics = {}
                # evaluate
                for batch in tqdm(
                        eval_data_collator(eval_dataset, eval_batch_size),
                        total=math.ceil(len(eval_dataset) / eval_batch_size),
                        desc="Evaluating ...",
                        position=2,
                ):
                    labels = batch.pop("labels")
                    predictions = pad_shard_unpad(p_eval_step)(
                        state,
                        batch,
                        min_device_batch=per_device_eval_batch_size)
                    predictions = np.array(predictions)
                    labels[np.array(chain(
                        *batch["attention_mask"])) == 0] = -100
                    preds, refs = get_labels(predictions, labels)
                    metric.add_batch(
                        predictions=preds,
                        references=refs,
                    )

                eval_metrics = compute_metrics()

                if data_args.return_entity_level_metrics:
                    logger.info(
                        f"Step... ({cur_step}/{total_steps} | Validation metrics: {eval_metrics}"
                    )
                else:
                    logger.info(
                        f"Step... ({cur_step}/{total_steps} | Validation f1: {eval_metrics['f1']}, Validation Acc:"
                        f" {eval_metrics['accuracy']})")

                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if (cur_step % training_args.save_steps == 0
                    and cur_step > 0) or (cur_step == total_steps):
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
                    model.save_pretrained(training_args.output_dir,
                                          params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(
                            commit_message=
                            f"Saving weights and logs of step {cur_step}",
                            blocking=False)
        epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}"

    # Eval after training
    if training_args.do_eval:
        eval_metrics = {}
        eval_loader = eval_data_collator(eval_dataset, eval_batch_size)
        for batch in tqdm(eval_loader,
                          total=len(eval_dataset) // eval_batch_size,
                          desc="Evaluating ...",
                          position=2):
            labels = batch.pop("labels")
            predictions = pad_shard_unpad(p_eval_step)(
                state, batch, min_device_batch=per_device_eval_batch_size)
            predictions = np.array(predictions)
            labels[np.array(chain(*batch["attention_mask"])) == 0] = -100
            preds, refs = get_labels(predictions, labels)
            metric.add_batch(predictions=preds, references=refs)

        eval_metrics = compute_metrics()

        if jax.process_index() == 0:
            eval_metrics = {
                f"eval_{metric_name}": value
                for metric_name, value in eval_metrics.items()
            }
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)
Exemplo n.º 16
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_translation", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    if data_args.source_prefix is None and model_args.model_name_or_path in [
            "t5-small",
            "t5-base",
            "t5-large",
            "t5-3b",
            "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    model.resize_token_embeddings(len(tokenizer))

    # Set decoder_start_token_id
    if model.config.decoder_start_token_id is None and isinstance(
            tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[
                data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(
                data_args.target_lang)

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
        )
        return

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments.")

        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token]
            if data_args.forced_bos_token is not None else None)
        model.config.forced_bos_token_id = forced_bos_token_id

    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(
            model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    def preprocess_function(examples):
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs,
                                 max_length=data_args.max_source_length,
                                 padding=padding,
                                 truncation=True)

        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets,
                           max_length=max_target_length,
                           padding=padding,
                           truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset),
                                      data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(
                range(max_predict_samples))
        with training_args.main_process_first(
                desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )

    # Metric
    metric = evaluate.load("sacrebleu")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [[label.strip()] for label in labels]

        return preds, labels

    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels,
                                                skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds, decoded_labels = postprocess_text(
            decoded_preds, decoded_labels)

        result = metric.compute(predictions=decoded_preds,
                                references=decoded_labels)
        result = {"bleu": result["score"]}

        prediction_lens = [
            np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds
        ]
        result["gen_len"] = np.mean(prediction_lens)
        result = {k: round(v, 4) for k, v in result.items()}
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    max_length = (training_args.generation_max_length
                  if training_args.generation_max_length is not None else
                  data_args.val_max_target_length)
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate(max_length=max_length,
                                   num_beams=num_beams,
                                   metric_key_prefix="eval")
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")

        predict_results = trainer.predict(predict_dataset,
                                          metric_key_prefix="predict",
                                          max_length=max_length,
                                          num_beams=num_beams)
        metrics = predict_results.metrics
        max_predict_samples = (data_args.max_predict_samples
                               if data_args.max_predict_samples is not None
                               else len(predict_dataset))
        metrics["predict_samples"] = min(max_predict_samples,
                                         len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        if trainer.is_world_process_zero():
            if training_args.predict_with_generate:
                predictions = tokenizer.batch_decode(
                    predict_results.predictions,
                    skip_special_tokens=True,
                    clean_up_tokenization_spaces=True)
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(
                    training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w",
                          encoding="utf-8") as writer:
                    writer.write("\n".join(predictions))

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "translation"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    languages = [
        l for l in [data_args.source_lang, data_args.target_lang]
        if l is not None
    ]
    if len(languages) > 0:
        kwargs["language"] = languages

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
Exemplo n.º 17
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
            raw_datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
    else:
        data_files = {}
        dataset_args = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = (data_args.train_file.split(".")[-1]
                     if data_args.train_file is not None else
                     data_args.validation_file.split(".")[-1])
        if extension == "txt":
            extension = "text"
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
            **dataset_args,
        )
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
                **dataset_args,
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
                **dataset_args,
            )

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            **config_kwargs)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            **config_kwargs)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
            logger.info(f"New config: {config}")

    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name,
                                                  **tokenizer_kwargs)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, **tokenizer_kwargs)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        model = AutoModelForCausalLM.from_config(config)
        n_params = sum(
            dict((p.data_ptr(), p.numel())
                 for p in model.parameters()).values())
        logger.info(
            f"Training new model from scratch - Total size={n_params/2**20:.2f}M params"
        )

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    else:
        column_names = raw_datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger(
        "transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model.")
        return output

    with training_args.main_process_first(desc="dataset map tokenization"):
        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {
            k: list(chain(*examples[k]))
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k:
            [t[i:i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    with training_args.main_process_first(desc="grouping texts together"):
        lm_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
            desc=f"Grouping texts in chunks of {block_size}",
        )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

        def preprocess_logits_for_metrics(logits, labels):
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
            return logits.argmax(dim=-1)

        metric = evaluate.load("accuracy")

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics but we need to shift the labels
            labels = labels[:, 1:].reshape(-1)
            preds = preds[:, :-1].reshape(-1)
            return metric.compute(predictions=preds, references=labels)

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
        compute_metrics=compute_metrics
        if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available() else None,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
        metrics["perplexity"] = perplexity

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "text-generation"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Exemplo n.º 18
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_image_classification", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the 'image-classification' task.
    if data_args.dataset_name is not None:
        dataset = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            task="image-classification",
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_dir is not None:
            data_files["train"] = os.path.join(data_args.train_dir, "**")
        if data_args.validation_dir is not None:
            data_files["validation"] = os.path.join(data_args.validation_dir,
                                                    "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            task="image-classification",
        )

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in dataset.keys(
    ) else data_args.train_val_split
    if isinstance(data_args.train_val_split,
                  float) and data_args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    labels = dataset["train"].features["labels"].names
    label2id, id2label = dict(), dict()
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
    metric = evaluate.load("accuracy")

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p):
        """Computes accuracy on a batch of predictions"""
        return metric.compute(predictions=np.argmax(p.predictions, axis=1),
                              references=p.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="image-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForImageClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Define torchvision transforms to be applied to each image.
    normalize = Normalize(mean=feature_extractor.image_mean,
                          std=feature_extractor.image_std)
    _train_transforms = Compose([
        RandomResizedCrop(feature_extractor.size),
        RandomHorizontalFlip(),
        ToTensor(),
        normalize,
    ])
    _val_transforms = Compose([
        Resize(feature_extractor.size),
        CenterCrop(feature_extractor.size),
        ToTensor(),
        normalize,
    ])

    def train_transforms(example_batch):
        """Apply _train_transforms across a batch."""
        example_batch["pixel_values"] = [
            _train_transforms(pil_img.convert("RGB"))
            for pil_img in example_batch["image"]
        ]
        return example_batch

    def val_transforms(example_batch):
        """Apply _val_transforms across a batch."""
        example_batch["pixel_values"] = [
            _val_transforms(pil_img.convert("RGB"))
            for pil_img in example_batch["image"]
        ]
        return example_batch

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            dataset["train"] = (dataset["train"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_train_samples)))
        # Set the training transforms
        dataset["train"].set_transform(train_transforms)

    if training_args.do_eval:
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            dataset["validation"] = (dataset["validation"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_eval_samples)))
        # Set the validation transforms
        dataset["validation"].set_transform(val_transforms)

    # Initalize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "image-classification",
        "dataset": data_args.dataset_name,
        "tags": ["image-classification", "vision"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Exemplo n.º 19
0
def main():
    args = parse_args()
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue_no_trainer", args)

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
    # in the environment
    accelerator = (
        Accelerator(log_with=args.report_to, logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    )
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.

    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset("glue", args.task_name)
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = (args.train_file if args.train_file is not None else args.validation_file).split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if args.task_name is not None:
        is_regression = args.task_name == "stsb"
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        ignore_mismatched_sizes=args.ignore_mismatched_sizes,
    )

    # Preprocessing the datasets
    if args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and args.task_name is not None
        and not is_regression
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            logger.info(
                f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
                "Using it!"
            )
            label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif args.task_name is None and not is_regression:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}
    elif args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {id: label for label, id in config.label2id.items()}

    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        # Tokenize the texts
        texts = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(*texts, padding=padding, max_length=args.max_length, truncation=True)

        if "label" in examples:
            if label_to_id is not None:
                # Map labels to IDs (not necessary for GLUE tasks)
                result["labels"] = [label_to_id[l] for l in examples["label"]]
            else:
                # In all cases, rename the column to labels because the model will expect that.
                result["labels"] = examples["label"]
        return result

    with accelerator.main_process_first():
        processed_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            remove_columns=raw_datasets["train"].column_names,
            desc="Running tokenizer on dataset",
        )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
    )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration.
    # We initialize the trackers only on main process because `accelerator.log`
    # only logs on main process and we don't want empty logs/runs on other processes.
    if args.with_tracking:
        if accelerator.is_main_process:
            experiment_config = vars(args)
            # TensorBoard cannot log Enums, need the raw value
            experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
            accelerator.init_trackers("glue_no_trainer", experiment_config)

    # Get the metric function
    if args.task_name is not None:
        metric = evaluate.load("glue", args.task_name)
    else:
        metric = evaluate.load("accuracy")

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[-1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        samples_seen = 0
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
            predictions, references = accelerator.gather((predictions, batch["labels"]))
            # If we are in a multiprocess environment, the last batch has duplicates
            if accelerator.num_processes > 1:
                if step == len(eval_dataloader) - 1:
                    predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
                    references = references[: len(eval_dataloader.dataset) - samples_seen]
                else:
                    samples_seen += references.shape[0]
            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metric = metric.compute()
        logger.info(f"epoch {epoch}: {eval_metric}")

        if args.with_tracking:
            accelerator.log(
                {
                    "accuracy" if args.task_name is not None else "glue": eval_metric,
                    "train_loss": total_loss.item() / len(train_dataloader),
                    "epoch": epoch,
                    "step": completed_steps,
                },
                step=completed_steps,
            )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
            )
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
                )

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
        )
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)

    if args.task_name == "mnli":
        # Final evaluation on mismatched validation set
        eval_dataset = processed_datasets["validation_mismatched"]
        eval_dataloader = DataLoader(
            eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
        )
        eval_dataloader = accelerator.prepare(eval_dataloader)

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            metric.add_batch(
                predictions=accelerator.gather(predictions),
                references=accelerator.gather(batch["labels"]),
            )

        eval_metric = metric.compute()
        logger.info(f"mnli-mm: {eval_metric}")

    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"eval_accuracy": eval_metric["accuracy"]}, f)
Exemplo n.º 20
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            "glue",
            data_args.task_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
            raw_datasets = load_dataset(
                "csv",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
        else:
            # Loading a dataset from local json files
            raw_datasets = load_dataset(
                "json",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

    # Preprocessing the raw_datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
        and not is_regression
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif data_args.task_name is None and not is_regression:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}
    elif data_args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {id: label for label, id in config.label2id.items()}

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
        return result

    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
        if "test" not in raw_datasets and "test_matched" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))

    # Log a few random samples from the training set:
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    if data_args.task_name is not None:
        metric = evaluate.load("glue", data_args.task_name)
    else:
        metric = evaluate.load("accuracy")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}

    # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
    # we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.save_model()  # Saves the tokenizer too for easy upload

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            eval_datasets.append(raw_datasets["validation_mismatched"])
            combined = {}

        for eval_dataset, task in zip(eval_datasets, tasks):
            metrics = trainer.evaluate(eval_dataset=eval_dataset)

            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

            if task == "mnli-mm":
                metrics = {k + "_mm": v for k, v in metrics.items()}
            if task is not None and "mnli" in task:
                combined.update(metrics)

            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        predict_datasets = [predict_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            predict_datasets.append(raw_datasets["test_mismatched"])

        for predict_dataset, task in zip(predict_datasets, tasks):
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
            predict_dataset = predict_dataset.remove_columns("label")
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)

            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
            if trainer.is_world_process_zero():
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
                        else:
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")

    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
    if data_args.task_name is not None:
        kwargs["language"] = "en"
        kwargs["dataset_tags"] = "glue"
        kwargs["dataset_args"] = data_args.task_name
        kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Exemplo n.º 21
0
def main():
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue", model_args, data_args, framework="flax")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(
                Path(training_args.output_dir).absolute().name, token=training_args.hub_token
            )
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.

    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            "glue",
            data_args.task_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    config = AutoConfig.from_pretrained(
        model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        use_fast=not model_args.use_slow_tokenizer,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = FlaxAutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
        and not is_regression
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            logger.info(
                f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
                "Using it!"
            )
            label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif data_args.task_name is None:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    def preprocess_function(examples):
        # Tokenize the texts
        texts = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(*texts, padding="max_length", max_length=data_args.max_seq_length, truncation=True)

        if "label" in examples:
            if label_to_id is not None:
                # Map labels to IDs (not necessary for GLUE tasks)
                result["labels"] = [label_to_id[l] for l in examples["label"]]
            else:
                # In all cases, rename the column to labels because the model will expect that.
                result["labels"] = examples["label"]
        return result

    processed_datasets = raw_datasets.map(
        preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
    )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Define a summary writer
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(training_args.output_dir)
            summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)})
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    def write_train_metric(summary_writer, train_metrics, train_time, step):
        summary_writer.scalar("train_time", train_time, step)

        train_metrics = get_metrics(train_metrics)
        for key, vals in train_metrics.items():
            tag = f"train_{key}"
            for i, val in enumerate(vals):
                summary_writer.scalar(tag, val, step - len(vals) + i + 1)

    def write_eval_metric(summary_writer, eval_metrics, step):
        for metric_name, value in eval_metrics.items():
            summary_writer.scalar(f"eval_{metric_name}", value, step)

    num_epochs = int(training_args.num_train_epochs)
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

    train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count()
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()

    learning_rate_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    state = create_train_state(
        model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=training_args.weight_decay
    )

    # define step functions
    def train_step(
        state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
    ) -> Tuple[train_state.TrainState, float]:
        """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
        targets = batch.pop("labels")

        def loss_fn(params):
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = state.loss_fn(logits, targets)
            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)
        metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
        return new_state, metrics, new_dropout_rng

    p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))

    def eval_step(state, batch):
        logits = state.apply_fn(**batch, params=state.params, train=False)[0]
        return state.logits_fn(logits)

    p_eval_step = jax.pmap(eval_step, axis_name="batch")

    if data_args.task_name is not None:
        metric = evaluate.load("glue", data_args.task_name)
    else:
        metric = evaluate.load("accuracy")

    logger.info(f"===== Starting training ({num_epochs} epochs) =====")
    train_time = 0

    # make sure weights are replicated on each device
    state = replicate(state)

    steps_per_epoch = len(train_dataset) // train_batch_size
    total_steps = steps_per_epoch * num_epochs
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (0/{num_epochs})", position=0)
    for epoch in epochs:

        train_start = time.time()
        train_metrics = []

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # train
        train_loader = glue_train_data_collator(input_rng, train_dataset, train_batch_size)
        for step, batch in enumerate(
            tqdm(
                train_loader,
                total=steps_per_epoch,
                desc="Training...",
                position=1,
            ),
        ):
            state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs)
            train_metrics.append(train_metric)

            cur_step = (epoch * steps_per_epoch) + (step + 1)

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})"
                )

                train_metrics = []

            if (cur_step % training_args.eval_steps == 0 or cur_step % steps_per_epoch == 0) and cur_step > 0:

                # evaluate
                eval_loader = glue_eval_data_collator(eval_dataset, eval_batch_size)
                for batch in tqdm(
                    eval_loader,
                    total=math.ceil(len(eval_dataset) / eval_batch_size),
                    desc="Evaluating ...",
                    position=2,
                ):
                    labels = batch.pop("labels")
                    predictions = pad_shard_unpad(p_eval_step)(
                        state, batch, min_device_batch=per_device_eval_batch_size
                    )
                    metric.add_batch(predictions=np.array(predictions), references=labels)

                eval_metric = metric.compute()

                logger.info(f"Step... ({cur_step}/{total_steps} | Eval metrics: {eval_metric})")

                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metric, cur_step)

            if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps):
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
            epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}"

    # save the eval metrics in json
    if jax.process_index() == 0:
        eval_metric = {f"eval_{metric_name}": value for metric_name, value in eval_metric.items()}
        path = os.path.join(training_args.output_dir, "eval_results.json")
        with open(path, "w") as f:
            json.dump(eval_metric, f, indent=4, sort_keys=True)
Exemplo n.º 22
0
def main():
    args = parse_args()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_qa_no_trainer", args)

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
    # in the environment
    accelerator_log_kwargs = {}

    if args.with_tracking:
        accelerator_log_kwargs["log_with"] = args.report_to
        accelerator_log_kwargs["logging_dir"] = args.output_dir

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        **accelerator_log_kwargs)

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name,
                                    args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        if args.test_file is not None:
            data_files["test"] = args.test_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    field="data")
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name,
                                                  use_fast=True)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path,
                                                  use_fast=True)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForQuestionAnswering.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForQuestionAnswering.from_config(config)

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.

    column_names = raw_datasets["train"].column_names

    question_column_name = "question" if "question" in column_names else column_names[
        0]
    context_column_name = "context" if "context" in column_names else column_names[
        1]
    answer_column_name = "answers" if "answers" in column_names else column_names[
        2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

    if args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )

    max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)

    # Training preprocessing
    def prepare_train_features(examples):
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [
            q.lstrip() for q in examples[question_column_name]
        ]

        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right
                                                          else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else
                                                        0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char
                        and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[
                            token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(
                        token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(
                        token_end_index + 1)

        return tokenized_examples

    if "train" not in raw_datasets:
        raise ValueError("--do_train requires a train dataset")
    train_dataset = raw_datasets["train"]
    if args.max_train_samples is not None:
        # We will select sample from whole data if agument is specified
        train_dataset = train_dataset.select(range(args.max_train_samples))

    # Create train feature from dataset
    with accelerator.main_process_first():
        train_dataset = train_dataset.map(
            prepare_train_features,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )
        if args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
            train_dataset = train_dataset.select(range(args.max_train_samples))

    # Validation preprocessing
    def prepare_validation_features(examples):
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [
            q.lstrip() for q in examples[question_column_name]
        ]

        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(
                examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if "validation" not in raw_datasets:
        raise ValueError("--do_eval requires a validation dataset")
    eval_examples = raw_datasets["validation"]
    if args.max_eval_samples is not None:
        # We will select sample from whole data
        eval_examples = eval_examples.select(range(args.max_eval_samples))
    # Validation Feature Creation
    with accelerator.main_process_first():
        eval_dataset = eval_examples.map(
            prepare_validation_features,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )

    if args.max_eval_samples is not None:
        # During Feature creation dataset samples might increase, we will select required samples again
        eval_dataset = eval_dataset.select(range(args.max_eval_samples))

    if args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_examples = raw_datasets["test"]
        if args.max_predict_samples is not None:
            # We will select sample from whole data
            predict_examples = predict_examples.select(
                range(args.max_predict_samples))
        # Predict Feature Creation
        with accelerator.main_process_first():
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
            if args.max_predict_samples is not None:
                # During Feature creation dataset samples might increase, we will select required samples again
                predict_dataset = predict_dataset.select(
                    range(args.max_predict_samples))

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorWithPadding(
            tokenizer,
            pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)

    eval_dataset_for_model = eval_dataset.remove_columns(
        ["example_id", "offset_mapping"])
    eval_dataloader = DataLoader(eval_dataset_for_model,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    if args.do_predict:
        predict_dataset_for_model = predict_dataset.remove_columns(
            ["example_id", "offset_mapping"])
        predict_dataloader = DataLoader(
            predict_dataset_for_model,
            collate_fn=data_collator,
            batch_size=args.per_device_eval_batch_size)

    # Post-processing:
    def post_processing_function(examples,
                                 features,
                                 predictions,
                                 stage="eval"):
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=args.version_2_with_negative,
            n_best_size=args.n_best_size,
            max_answer_length=args.max_answer_length,
            null_score_diff_threshold=args.null_score_diff_threshold,
            output_dir=args.output_dir,
            prefix=stage,
        )
        # Format the result to the format the metric expects.
        if args.version_2_with_negative:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v,
                "no_answer_probability": 0.0
            } for k, v in predictions.items()]
        else:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v
            } for k, v in predictions.items()]

        references = [{
            "id": ex["id"],
            "answers": ex[answer_column_name]
        } for ex in examples]
        return EvalPrediction(predictions=formatted_predictions,
                              label_ids=references)

    metric = evaluate.load(
        "squad_v2" if args.version_2_with_negative else "squad")

    # Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor
    def create_and_fill_np_array(start_or_end_logits, dataset, max_len):
        """
        Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor

        Args:
            start_or_end_logits(:obj:`tensor`):
                This is the output predictions of the model. We can only enter either start or end logits.
            eval_dataset: Evaluation dataset
            max_len(:obj:`int`):
                The maximum length of the output tensor. ( See the model.eval() part for more details )
        """

        step = 0
        # create a numpy array and fill it with -100.
        logits_concat = np.full((len(dataset), max_len),
                                -100,
                                dtype=np.float64)
        # Now since we have create an array now we will populate it with the outputs gathered using accelerator.gather_for_metrics
        for i, output_logit in enumerate(
                start_or_end_logits):  # populate columns
            # We have to fill it such that we have to take the whole tensor and replace it on the newly created array
            # And after every iteration we have to change the step

            batch_size = output_logit.shape[0]
            cols = output_logit.shape[1]

            if step + batch_size < len(dataset):
                logits_concat[step:step + batch_size, :cols] = output_logit
            else:
                logits_concat[step:, :cols] = output_logit[:len(dataset) -
                                                           step]

            step += batch_size

        return logits_concat

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = torch.optim.AdamW(optimizer_grouped_parameters,
                                  lr=args.learning_rate)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps *
        args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps *
        args.gradient_accumulation_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps /
                                      num_update_steps_per_epoch)

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration.
    # We initialize the trackers only on main process because `accelerator.log`
    # only logs on main process and we don't want empty logs/runs on other processes.
    if args.with_tracking:
        if accelerator.is_main_process:
            experiment_config = vars(args)
            # TensorBoard cannot log Enums, need the raw value
            experiment_config["lr_scheduler_type"] = experiment_config[
                "lr_scheduler_type"].value
            accelerator.init_trackers("qa_no_trainer", experiment_config)

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue

            with accelerator.accumulate(model):
                outputs = model(**batch)
                loss = outputs.loss
                # We keep track of the loss at each epoch
                if args.with_tracking:
                    total_loss += loss.detach().float()

                accelerator.backward(loss)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

            if completed_steps >= args.max_train_steps:
                break

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir,
                is_main_process=accelerator.is_main_process,
                save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

    # Evaluation
    logger.info("***** Running Evaluation *****")
    logger.info(f"  Num examples = {len(eval_dataset)}")
    logger.info(f"  Batch size = {args.per_device_eval_batch_size}")

    all_start_logits = []
    all_end_logits = []

    model.eval()

    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(**batch)
            start_logits = outputs.start_logits
            end_logits = outputs.end_logits

            if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                start_logits = accelerator.pad_across_processes(start_logits,
                                                                dim=1,
                                                                pad_index=-100)
                end_logits = accelerator.pad_across_processes(end_logits,
                                                              dim=1,
                                                              pad_index=-100)

            all_start_logits.append(
                accelerator.gather_for_metrics(start_logits).cpu().numpy())
            all_end_logits.append(
                accelerator.gather_for_metrics(end_logits).cpu().numpy())

    max_len = max([x.shape[1] for x in all_start_logits
                   ])  # Get the max_length of the tensor

    # concatenate the numpy array
    start_logits_concat = create_and_fill_np_array(all_start_logits,
                                                   eval_dataset, max_len)
    end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset,
                                                 max_len)

    # delete the list of numpy arrays
    del all_start_logits
    del all_end_logits

    outputs_numpy = (start_logits_concat, end_logits_concat)
    prediction = post_processing_function(eval_examples, eval_dataset,
                                          outputs_numpy)
    eval_metric = metric.compute(predictions=prediction.predictions,
                                 references=prediction.label_ids)
    logger.info(f"Evaluation metrics: {eval_metric}")

    # Prediction
    if args.do_predict:
        logger.info("***** Running Prediction *****")
        logger.info(f"  Num examples = {len(predict_dataset)}")
        logger.info(f"  Batch size = {args.per_device_eval_batch_size}")

        all_start_logits = []
        all_end_logits = []

        model.eval()

        for step, batch in enumerate(predict_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
                start_logits = outputs.start_logits
                end_logits = outputs.end_logits

                if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                    start_logits = accelerator.pad_across_processes(
                        start_logits, dim=1, pad_index=-100)
                    end_logits = accelerator.pad_across_processes(
                        end_logits, dim=1, pad_index=-100)

                all_start_logits.append(
                    accelerator.gather_for_metrics(start_logits).cpu().numpy())
                all_end_logits.append(
                    accelerator.gather_for_metrics(end_logits).cpu().numpy())

        max_len = max([x.shape[1] for x in all_start_logits
                       ])  # Get the max_length of the tensor
        # concatenate the numpy array
        start_logits_concat = create_and_fill_np_array(all_start_logits,
                                                       predict_dataset,
                                                       max_len)
        end_logits_concat = create_and_fill_np_array(all_end_logits,
                                                     predict_dataset, max_len)

        # delete the list of numpy arrays
        del all_start_logits
        del all_end_logits

        outputs_numpy = (start_logits_concat, end_logits_concat)
        prediction = post_processing_function(predict_examples,
                                              predict_dataset, outputs_numpy)
        predict_metric = metric.compute(predictions=prediction.predictions,
                                        references=prediction.label_ids)
        logger.info(f"Predict metrics: {predict_metric}")

    if args.with_tracking:
        log = {
            "squad_v2" if args.version_2_with_negative else "squad":
            eval_metric,
            "train_loss": total_loss.item() / len(train_dataloader),
            "epoch": epoch,
            "step": completed_steps,
        }
    if args.do_predict:
        log["squad_v2_predict" if args.
            version_2_with_negative else "squad_predict"] = predict_metric

        accelerator.log(log, step=completed_steps)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)

            logger.info(json.dumps(eval_metric, indent=4))
            save_prefixed_metrics(eval_metric, args.output_dir)
Exemplo n.º 23
0
def main():
    # 1. Parse input arguments
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_speech_recognition_seq2seq", model_args,
                           data_args)

    # 2. Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # 3. Detecting last checkpoint and eventualy continue from last checkpoint
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 4. Load dataset
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.train_split_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.eval_split_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    if data_args.audio_column_name not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column_name` to the correct audio column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    if data_args.text_column_name not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--text_column_name` to the correct text column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    # 5. Load pretrained model, tokenizer, and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name if model_args.feature_extractor_name
        else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Resample speech dataset if necassary
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[
        data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name,
            datasets.features.Audio(
                sampling_rate=feature_extractor.sampling_rate))

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers
    text_column_name = data_args.text_column_name
    model_input_name = feature_extractor.model_input_names[0]
    do_lower_case = data_args.do_lower_case

    if data_args.max_train_samples is not None:
        raw_datasets["train"] = raw_datasets["train"].select(
            range(data_args.max_train_samples))

    if data_args.max_eval_samples is not None:
        raw_datasets["eval"] = raw_datasets["eval"].select(
            range(data_args.max_eval_samples))

    def prepare_dataset(batch):
        # process audio
        sample = batch[audio_column_name]
        inputs = feature_extractor(sample["array"],
                                   sampling_rate=sample["sampling_rate"])
        # process audio length
        batch[model_input_name] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # process targets
        input_str = batch[text_column_name].lower(
        ) if do_lower_case else batch[text_column_name]
        batch["labels"] = tokenizer(input_str).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map pre-processing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=data_args.preprocessing_num_workers,
            desc="preprocess train dataset",
        )

    # filter data that is shorter than min_input_length or longer than
    # max_input_length
    def is_audio_in_length_range(length):
        return length > min_input_length and length < max_input_length

    vectorized_datasets = vectorized_datasets.filter(
        is_audio_in_length_range,
        num_proc=num_workers,
        input_columns=["input_length"],
    )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 8. Load Metric
    metric = evaluate.load("wer")

    def compute_metrics(pred):
        pred_ids = pred.predictions

        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids,
                                           skip_special_tokens=True)

        wer = metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    # 9. Create a single speech processor
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)

    processor = AutoProcessor.from_pretrained(training_args.output_dir)

    # 10. Define data collator
    data_collator = DataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=model.config.decoder_start_token_id)

    # 11. Initialize Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=vectorized_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"]
        if training_args.do_eval else None,
        tokenizer=feature_extractor,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.predict_with_generate else None,
    )

    # 12. Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the feature extractor too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # 13. Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(metric_key_prefix="eval",
                                   max_length=model.config.max_length,
                                   num_beams=model.config.num_beams)
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else len(
                                vectorized_datasets["eval"]))
        metrics["eval_samples"] = min(max_eval_samples,
                                      len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # 14. Write Training Stats
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "speech recognition"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
Exemplo n.º 24
0
def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_translation",
                           model_args,
                           data_args,
                           framework="tensorflow")
    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity(logging.INFO)
    transformers.utils.logging.set_verbosity(logging.INFO)

    # Log on each process the small summary:
    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Detecting last checkpoint
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
    # endregion

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Load model config and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
    # endregion

    # region Dataset preprocessing
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, and/or `do_eval`."
        )
        return

    column_names = raw_datasets["train"].column_names

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments.")
        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token]
            if data_args.forced_bos_token is not None else None)

    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]

    padding = "max_length" if data_args.pad_to_max_length else False

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs,
                                 max_length=data_args.max_source_length,
                                 padding=padding,
                                 truncation=True)

        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets,
                           max_length=max_target_length,
                           padding=padding,
                           truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
    else:
        train_dataset = None

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
    else:
        eval_dataset = None
    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        model = TFAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

        model.resize_token_embeddings(len(tokenizer))
        if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
            model.config.forced_bos_token_id = forced_bos_token_id
        # endregion

        # region Set decoder_start_token_id
        if model.config.decoder_start_token_id is None and isinstance(
                tokenizer, (MBartTokenizer, MBartTokenizerFast)):
            assert (data_args.target_lang is not None
                    and data_args.source_lang is not None
                    ), "mBart requires --target_lang and --source_lang"
            if isinstance(tokenizer, MBartTokenizer):
                model.config.decoder_start_token_id = tokenizer.lang_code_to_id[
                    data_args.target_lang]
            else:
                model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(
                    data_args.target_lang)

        if model.config.decoder_start_token_id is None:
            raise ValueError(
                "Make sure that `config.decoder_start_token_id` is correctly defined"
            )
        # endregion

        # region Prepare TF Dataset objects
        label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=
            64,  # Reduce the number of unique shapes for XLA, especially for generation
            return_tensors="tf",
        )
        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas

        dataset_options = tf.data.Options()
        dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF

        # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
        # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
        # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
        # yourself if you use this method, whereas they are automatically inferred from the model input names when
        # using model.prepare_tf_dataset()
        # For more info see the docs:
        # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
        # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

        tf_train_dataset = model.prepare_tf_dataset(
            train_dataset,
            collate_fn=data_collator,
            batch_size=total_train_batch_size,
            shuffle=True,
        ).with_options(dataset_options)
        tf_eval_dataset = model.prepare_tf_dataset(
            eval_dataset,
            collate_fn=data_collator,
            batch_size=total_eval_batch_size,
            shuffle=False).with_options(dataset_options)
        # endregion

        # region Optimizer and LR scheduling
        num_train_steps = int(
            len(tf_train_dataset) * training_args.num_train_epochs)
        if training_args.warmup_steps > 0:
            num_warmup_steps = training_args.warmup_steps
        elif training_args.warmup_ratio > 0:
            num_warmup_steps = int(num_train_steps *
                                   training_args.warmup_ratio)
        else:
            num_warmup_steps = 0
        if training_args.do_train:
            optimizer, lr_schedule = create_optimizer(
                init_lr=training_args.learning_rate,
                num_train_steps=num_train_steps,
                num_warmup_steps=num_warmup_steps,
                adam_beta1=training_args.adam_beta1,
                adam_beta2=training_args.adam_beta2,
                adam_epsilon=training_args.adam_epsilon,
                weight_decay_rate=training_args.weight_decay,
                adam_global_clipnorm=training_args.max_grad_norm,
            )
        else:
            optimizer = None
        # endregion

        # region Metric and postprocessing
        if training_args.do_eval:
            metric = evaluate.load("sacrebleu")

            if data_args.val_max_target_length is None:
                data_args.val_max_target_length = data_args.max_target_length

            gen_kwargs = {
                "max_length": data_args.val_max_target_length,
                "num_beams": data_args.num_beams,
                "no_repeat_ngram_size":
                0,  # Not supported under XLA right now, and some models set it by default
            }

            def postprocess_text(preds, labels):
                preds = [pred.strip() for pred in preds]
                labels = [[label.strip()] for label in labels]

                return preds, labels

            def compute_metrics(preds):
                predictions, labels = preds
                if isinstance(predictions, tuple):
                    predictions = predictions[0]
                decoded_preds = tokenizer.batch_decode(
                    predictions, skip_special_tokens=True)
                labels = np.where(labels != -100, labels,
                                  tokenizer.pad_token_id)
                decoded_labels = tokenizer.batch_decode(
                    labels, skip_special_tokens=True)
                decoded_preds, decoded_labels = postprocess_text(
                    decoded_preds, decoded_labels)
                metrics = metric.compute(predictions=decoded_preds,
                                         references=decoded_labels)
                return {"bleu": metrics["score"]}

            # The KerasMetricCallback allows metrics that are too complex to write as standard Keras metrics
            # to be computed each epoch. Any Python code can be included in the metric_fn. This is especially
            # useful for metrics like BLEU and ROUGE that perform string comparisons on decoded model outputs.
            # For more information, see the docs at
            # https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.KerasMetricCallback

            metric_callback = KerasMetricCallback(
                metric_fn=compute_metrics,
                eval_dataset=tf_eval_dataset,
                predict_with_generate=True,
                use_xla_generation=True,
                generate_kwargs=gen_kwargs,
            )
            callbacks = [metric_callback]
        else:
            callbacks = []

        # endregion

        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            push_to_hub_model_id = f"{model_name}-finetuned-{data_args.source_lang}-{data_args.target_lang}"

        model_card_kwargs = {
            "finetuned_from": model_args.model_name_or_path,
            "tasks": "translation"
        }
        if data_args.dataset_name is not None:
            model_card_kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                model_card_kwargs[
                    "dataset_args"] = data_args.dataset_config_name
                model_card_kwargs[
                    "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                model_card_kwargs["dataset"] = data_args.dataset_name

        languages = [
            l for l in [data_args.source_lang, data_args.target_lang]
            if l is not None
        ]
        if len(languages) > 0:
            model_card_kwargs["language"] = languages

        if training_args.push_to_hub:
            # Because this training can be quite long, we save once per epoch.
            callbacks.append(
                PushToHubCallback(
                    output_dir=training_args.output_dir,
                    model_id=push_to_hub_model_id,
                    organization=training_args.push_to_hub_organization,
                    token=training_args.push_to_hub_token,
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                ))
        # endregion

        # region Training
        eval_metrics = None
        model.compile(optimizer=optimizer, jit_compile=training_args.xla)

        if training_args.do_train:
            logger.info("***** Running training *****")
            logger.info(f"  Num examples = {len(train_dataset)}")
            logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
            logger.info(
                f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
            )
            logger.info(f"  Total train batch size = {total_train_batch_size}")
            logger.info(f"  Total optimization steps = {num_train_steps}")

            if training_args.xla and not data_args.pad_to_max_length:
                logger.warning(
                    "XLA training may be slow at first when --pad_to_max_length is not set "
                    "until all possible shapes have been compiled.")

            history = model.fit(tf_train_dataset,
                                epochs=int(training_args.num_train_epochs),
                                callbacks=callbacks)
            eval_metrics = {
                key: val[-1]
                for key, val in history.history.items()
            }
        # endregion

        # region Validation
        if training_args.do_eval and not training_args.do_train:
            # Compiling generation with XLA yields enormous speedups, see https://huggingface.co/blog/tf-xla-generate
            @tf.function(jit_compile=True)
            def generate(**kwargs):
                return model.generate(**kwargs)

            if training_args.do_eval:
                logger.info("Evaluation...")
                for batch, labels in tf_eval_dataset:
                    batch.update(gen_kwargs)
                    generated_tokens = generate(**batch)
                    if isinstance(generated_tokens, tuple):
                        generated_tokens = generated_tokens[0]
                    decoded_preds = tokenizer.batch_decode(
                        generated_tokens, skip_special_tokens=True)
                    labels = np.where(labels != -100, labels,
                                      tokenizer.pad_token_id)
                    decoded_labels = tokenizer.batch_decode(
                        labels, skip_special_tokens=True)
                    decoded_preds, decoded_labels = postprocess_text(
                        decoded_preds, decoded_labels)

                    metric.add_batch(predictions=decoded_preds,
                                     references=decoded_labels)

                eval_metrics = metric.compute()
                logger.info({"bleu": eval_metrics["score"]})
        # endregion

        if training_args.output_dir is not None and eval_metrics is not None:
            output_eval_file = os.path.join(training_args.output_dir,
                                            "all_results.json")
            with open(output_eval_file, "w") as writer:
                writer.write(json.dumps(eval_metrics))

        if training_args.output_dir is not None and not training_args.push_to_hub:
            # If we're not pushing to hub, at least save a local copy when we're done
            model.save_pretrained(training_args.output_dir)
Exemplo n.º 25
0
def main():
    args = parse_args()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_image_classification_no_trainer", args)

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
    # in the environment
    accelerator_log_kwargs = {}

    if args.with_tracking:
        accelerator_log_kwargs["log_with"] = args.report_to
        accelerator_log_kwargs["logging_dir"] = args.output_dir

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        **accelerator_log_kwargs)

    logger.info(accelerator.state)
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(args.dataset_name, task="image-classification")
    else:
        data_files = {}
        if args.train_dir is not None:
            data_files["train"] = os.path.join(args.train_dir, "**")
        if args.validation_dir is not None:
            data_files["validation"] = os.path.join(args.validation_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=args.cache_dir,
            task="image-classification",
        )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder.

    # If we don't have a validation split, split off a percentage of train as validation.
    args.train_val_split = None if "validation" in dataset.keys(
    ) else args.train_val_split
    if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    labels = dataset["train"].features["labels"].names
    label2id = {label: str(i) for i, label in enumerate(labels)}
    id2label = {str(i): label for i, label in enumerate(labels)}

    # Load pretrained model and feature extractor
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        args.model_name_or_path,
        num_labels=len(labels),
        i2label=id2label,
        label2id=label2id,
        finetuning_task="image-classification",
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        args.model_name_or_path)
    model = AutoModelForImageClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        ignore_mismatched_sizes=args.ignore_mismatched_sizes,
    )

    # Preprocessing the datasets

    # Define torchvision transforms to be applied to each image.
    normalize = Normalize(mean=feature_extractor.image_mean,
                          std=feature_extractor.image_std)
    train_transforms = Compose([
        RandomResizedCrop(feature_extractor.size),
        RandomHorizontalFlip(),
        ToTensor(),
        normalize,
    ])
    val_transforms = Compose([
        Resize(feature_extractor.size),
        CenterCrop(feature_extractor.size),
        ToTensor(),
        normalize,
    ])

    def preprocess_train(example_batch):
        """Apply _train_transforms across a batch."""
        example_batch["pixel_values"] = [
            train_transforms(image.convert("RGB"))
            for image in example_batch["image"]
        ]
        return example_batch

    def preprocess_val(example_batch):
        """Apply _val_transforms across a batch."""
        example_batch["pixel_values"] = [
            val_transforms(image.convert("RGB"))
            for image in example_batch["image"]
        ]
        return example_batch

    with accelerator.main_process_first():
        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(
                range(args.max_train_samples))
        # Set the training transforms
        train_dataset = dataset["train"].with_transform(preprocess_train)
        if args.max_eval_samples is not None:
            dataset["validation"] = dataset["validation"].shuffle(
                seed=args.seed).select(range(args.max_eval_samples))
        # Set the validation transforms
        eval_dataset = dataset["validation"].with_transform(preprocess_val)

    # DataLoaders creation:
    def collate_fn(examples):
        pixel_values = torch.stack(
            [example["pixel_values"] for example in examples])
        labels = torch.tensor([example["labels"] for example in examples])
        return {"pixel_values": pixel_values, "labels": labels}

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=collate_fn,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=collate_fn,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = torch.optim.AdamW(optimizer_grouped_parameters,
                                  lr=args.learning_rate)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps *
        args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps *
        args.gradient_accumulation_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps /
                                      num_update_steps_per_epoch)

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration.
    # We initialize the trackers only on main process because `accelerator.log`
    # only logs on main process and we don't want empty logs/runs on other processes.
    if args.with_tracking:
        if accelerator.is_main_process:
            experiment_config = vars(args)
            # TensorBoard cannot log Enums, need the raw value
            experiment_config["lr_scheduler_type"] = experiment_config[
                "lr_scheduler_type"].value
            accelerator.init_trackers("image_classification_no_trainer",
                                      experiment_config)

    # Get the metric function
    metric = evaluate.load("accuracy")

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue

            with accelerator.accumulate(model):
                outputs = model(**batch)
                loss = outputs.loss
                # We keep track of the loss at each epoch
                if args.with_tracking:
                    total_loss += loss.detach().float()
                accelerator.backward(loss)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

                    if args.push_to_hub and epoch < args.num_train_epochs - 1:
                        accelerator.wait_for_everyone()
                        unwrapped_model = accelerator.unwrap_model(model)
                        unwrapped_model.save_pretrained(
                            args.output_dir,
                            is_main_process=accelerator.is_main_process,
                            save_function=accelerator.save,
                        )
                        if accelerator.is_main_process:
                            feature_extractor.save_pretrained(args.output_dir)
                            repo.push_to_hub(
                                commit_message=
                                f"Training in progress {completed_steps} steps",
                                blocking=False,
                                auto_lfs_prune=True,
                            )

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            predictions, references = accelerator.gather_for_metrics(
                (predictions, batch["labels"]))
            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metric = metric.compute()
        logger.info(f"epoch {epoch}: {eval_metric}")

        if args.with_tracking:
            accelerator.log(
                {
                    "accuracy": eval_metric,
                    "train_loss": total_loss.item() / len(train_dataloader),
                    "epoch": epoch,
                    "step": completed_steps,
                },
                step=completed_steps,
            )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir,
                is_main_process=accelerator.is_main_process,
                save_function=accelerator.save)
            if accelerator.is_main_process:
                feature_extractor.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save)
        if accelerator.is_main_process:
            feature_extractor.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)

    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"eval_accuracy": eval_metric["accuracy"]}, f)
Exemplo n.º 26
0
def annotate_documents_(source_path, save_path):
    documents = load(source_path)
    annotate_documents(documents, save_path)
Exemplo n.º 27
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_semantic_segmentation", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Load dataset
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # TODO support datasets from local folders
    dataset = load_dataset(data_args.dataset_name,
                           cache_dir=model_args.cache_dir)

    # Rename column names to standardized names (only "image" and "label" need to be present)
    if "pixel_values" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"pixel_values": "image"})
    if "annotation" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"annotation": "label"})

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in dataset.keys(
    ) else data_args.train_val_split
    if isinstance(data_args.train_val_split,
                  float) and data_args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    if data_args.dataset_name == "scene_parse_150":
        repo_id = "datasets/huggingface/label-files"
        filename = "ade20k-id2label.json"
    else:
        repo_id = f"datasets/{data_args.dataset_name}"
        filename = "id2label.json"
    id2label = json.load(open(hf_hub_download(repo_id, filename), "r"))
    id2label = {int(k): v for k, v in id2label.items()}
    label2id = {v: str(k) for k, v in id2label.items()}

    # Load the mean IoU metric from the datasets package
    metric = evaluate.load("mean_iou")

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    @torch.no_grad()
    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        logits_tensor = torch.from_numpy(logits)
        # scale the logits to the size of the label
        logits_tensor = nn.functional.interpolate(
            logits_tensor,
            size=labels.shape[-2:],
            mode="bilinear",
            align_corners=False,
        ).argmax(dim=1)

        pred_labels = logits_tensor.detach().cpu().numpy()
        metrics = metric.compute(
            predictions=pred_labels,
            references=labels,
            num_labels=len(id2label),
            ignore_index=0,
            reduce_labels=feature_extractor.reduce_labels,
        )
        # add per category metrics as individual key-value pairs
        per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
        per_category_iou = metrics.pop("per_category_iou").tolist()

        metrics.update({
            f"accuracy_{id2label[i]}": v
            for i, v in enumerate(per_category_accuracy)
        })
        metrics.update(
            {f"iou_{id2label[i]}": v
             for i, v in enumerate(per_category_iou)})

        return metrics

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        label2id=label2id,
        id2label=id2label,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSemanticSegmentation.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Define torchvision transforms to be applied to each image + target.
    # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
    # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
    train_transforms = Compose([
        ReduceLabels() if data_args.reduce_labels else Identity(),
        RandomCrop(size=feature_extractor.size),
        RandomHorizontalFlip(flip_prob=0.5),
        PILToTensor(),
        ConvertImageDtype(torch.float),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])
    # Define torchvision transform to be applied to each image.
    # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
    val_transforms = Compose([
        ReduceLabels() if data_args.reduce_labels else Identity(),
        Resize(size=(feature_extractor.size, feature_extractor.size)),
        PILToTensor(),
        ConvertImageDtype(torch.float),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])

    def preprocess_train(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"],
                                 example_batch["label"]):
            image, target = train_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = dict()
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    def preprocess_val(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"],
                                 example_batch["label"]):
            image, target = val_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = dict()
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            dataset["train"] = (dataset["train"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_train_samples)))
        # Set the training transforms
        dataset["train"].set_transform(preprocess_train)

    if training_args.do_eval:
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            dataset["validation"] = (dataset["validation"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_eval_samples)))
        # Set the validation transforms
        dataset["validation"].set_transform(preprocess_val)

    # Initalize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "dataset": data_args.dataset_name,
        "tags": ["image-segmentation", "vision"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Exemplo n.º 28
0
def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue",
                           model_args,
                           data_args,
                           framework="tensorflow")

    if not (training_args.do_train or training_args.do_eval
            or training_args.do_predict):
        exit(
            "Must specify at least one of --do_train, --do_eval or --do_predict!"
        )
    # endregion

    # region Checkpoints
    checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        checkpoint = get_last_checkpoint(training_args.output_dir)
        if checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Dataset and labels
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Downloading and loading a dataset from the hub. In distributed training, the load_dataset function guarantee
    # that only one local process can concurrently download the dataset.
    datasets = load_dataset(
        "glue",
        data_args.task_name,
        cache_dir=model_args.cache_dir,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    is_regression = data_args.task_name == "stsb"
    if not is_regression:
        label_list = datasets["train"].features["label"].names
        num_labels = len(label_list)
    else:
        num_labels = 1

    if data_args.predict_file is not None:
        logger.info("Preparing user-supplied file for predictions...")

        data_files = {"data": data_args.predict_file}

        for key in data_files.keys():
            logger.info(f"Loading a local file for {key}: {data_files[key]}")

        if data_args.predict_file.endswith(".csv"):
            # Loading a dataset from local csv files
            user_dataset = load_dataset("csv",
                                        data_files=data_files,
                                        cache_dir=model_args.cache_dir)
        else:
            # Loading a dataset from local json files
            user_dataset = load_dataset("json",
                                        data_files=data_files,
                                        cache_dir=model_args.cache_dir)
        needed_keys = task_to_keys[data_args.task_name]
        for key in needed_keys:
            assert key in user_dataset[
                "data"].features, f"Your supplied predict_file is missing the {key} key!"
        datasets["user_data"] = user_dataset["data"]
    # endregion

    # region Load model config and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    # endregion

    # region Dataset preprocessing
    sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    non_label_column_names = [
        name for name in datasets["train"].column_names if name != "label"
    ]

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if config.label2id != PretrainedConfig(
            num_labels=num_labels).label2id and not is_regression:
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {
                i: int(label_name_to_id[label_list[i]])
                for i in range(num_labels)
            }
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
            label_to_id = {label: i for i, label in enumerate(label_list)}
    if label_to_id is not None:
        config.label2id = label_to_id
        config.id2label = {id: label for label, id in config.label2id.items()}
    elif data_args.task_name is not None and not is_regression:
        config.label2id = {l: i for i, l in enumerate(label_list)}
        config.id2label = {id: label for label, id in config.label2id.items()}

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def preprocess_function(examples):
        # Tokenize the texts
        args = ((examples[sentence1_key], ) if sentence2_key is None else
                (examples[sentence1_key], examples[sentence2_key]))
        result = tokenizer(*args,
                           padding=padding,
                           max_length=max_seq_length,
                           truncation=True)

        return result

    datasets = datasets.map(preprocess_function,
                            batched=True,
                            load_from_cache_file=not data_args.overwrite_cache)

    if data_args.pad_to_max_length:
        data_collator = DefaultDataCollator(return_tensors="tf")
    else:
        data_collator = DataCollatorWithPadding(tokenizer, return_tensors="tf")
    # endregion

    # region Metric function
    metric = evaluate.load("glue", data_args.task_name)

    def compute_metrics(preds, label_ids):
        preds = preds["logits"]
        preds = np.squeeze(preds) if is_regression else np.argmax(preds,
                                                                  axis=1)
        result = metric.compute(predictions=preds, references=label_ids)
        if len(result) > 1:
            result["combined_score"] = np.mean(list(result.values())).item()
        return result

    # endregion

    with training_args.strategy.scope():
        # region Load pretrained model
        if checkpoint is None:
            model_path = model_args.model_name_or_path
        else:
            model_path = checkpoint
        model = TFAutoModelForSequenceClassification.from_pretrained(
            model_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        # endregion

        # region Optimizer, loss and compilation
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=training_args.learning_rate,
            beta_1=training_args.adam_beta1,
            beta_2=training_args.adam_beta2,
            epsilon=training_args.adam_epsilon,
            clipnorm=training_args.max_grad_norm,
        )
        if is_regression:
            loss_fn = tf.keras.losses.MeanSquaredError()
            metrics = []
        else:
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True)
            metrics = ["accuracy"]
        model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics)
        # endregion

        # region Convert data to a tf.data.Dataset
        tf_data = dict()
        max_samples = {
            "train": data_args.max_train_samples,
            "validation": data_args.max_eval_samples,
            "validation_matched": data_args.max_eval_samples,
            "validation_mismatched": data_args.max_eval_samples,
            "test": data_args.max_predict_samples,
            "test_matched": data_args.max_predict_samples,
            "test_mismatched": data_args.max_predict_samples,
            "user_data": None,
        }
        for key in datasets.keys():
            if key == "train" or key.startswith("validation"):
                assert "label" in datasets[
                    key].features, f"Missing labels from {key} data!"
            if key == "train":
                shuffle = True
                batch_size = training_args.per_device_train_batch_size
                drop_remainder = True  # Saves us worrying about scaling gradients for the last batch
            else:
                shuffle = False
                batch_size = training_args.per_device_eval_batch_size
                drop_remainder = False
            samples_limit = max_samples[key]
            dataset = datasets[key]
            if samples_limit is not None:
                dataset = dataset.select(range(samples_limit))
            data = dataset.to_tf_dataset(
                columns=[
                    col for col in dataset.column_names
                    if col not in set(non_label_column_names + ["label"])
                ],
                shuffle=shuffle,
                batch_size=batch_size,
                collate_fn=data_collator,
                drop_remainder=drop_remainder,
                # `label_cols` is needed for user-defined losses, such as in this example
                label_cols="label"
                if "label" in dataset.column_names else None,
            )
            tf_data[key] = data
        # endregion

        # region Training and validation
        if training_args.do_train:
            callbacks = [
                SavePretrainedCallback(output_dir=training_args.output_dir)
            ]
            if training_args.do_eval and not data_args.task_name == "mnli":
                # Do both evaluation and training in the Keras fit loop, unless the task is MNLI
                # because MNLI has two validation sets
                validation_data = tf_data["validation"]
            else:
                validation_data = None
            model.fit(
                tf_data["train"],
                validation_data=validation_data,
                epochs=int(training_args.num_train_epochs),
                callbacks=callbacks,
            )
        # endregion

        # region Evaluation
        if training_args.do_eval:
            # We normally do validation as part of the Keras fit loop, but we run it independently
            # if there was no fit() step (because we didn't train the model) or if the task is MNLI,
            # because MNLI has a separate validation-mismatched validation set
            logger.info("*** Evaluate ***")

            # Loop to handle MNLI double evaluation (matched, mis-matched)
            if data_args.task_name == "mnli":
                tasks = ["mnli", "mnli-mm"]
                tf_datasets = [
                    tf_data["validation_matched"],
                    tf_data["validation_mismatched"]
                ]
                raw_datasets = [
                    datasets["validation_matched"],
                    datasets["validation_mismatched"]
                ]
            else:
                tasks = [data_args.task_name]
                tf_datasets = [tf_data["validation"]]
                raw_datasets = [datasets["validation"]]

            for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets,
                                                     tasks):
                eval_predictions = model.predict(tf_dataset)
                eval_metrics = compute_metrics(eval_predictions,
                                               raw_dataset["label"])
                print(f"Evaluation metrics ({task}):")
                print(eval_metrics)

        # endregion

        # region Prediction
        if training_args.do_predict or data_args.predict_file:
            logger.info("*** Predict ***")

            # Loop to handle MNLI double evaluation (matched, mis-matched)
            tasks = []
            tf_datasets = []
            raw_datasets = []
            if training_args.do_predict:
                if data_args.task_name == "mnli":
                    tasks.extend(["mnli", "mnli-mm"])
                    tf_datasets.extend(
                        [tf_data["test_matched"], tf_data["test_mismatched"]])
                    raw_datasets.extend([
                        datasets["test_matched"], datasets["test_mismatched"]
                    ])
                else:
                    tasks.append(data_args.task_name)
                    tf_datasets.append(tf_data["test"])
                    raw_datasets.append(datasets["test"])
            if data_args.predict_file:
                tasks.append("user_data")
                tf_datasets.append(tf_data["user_data"])
                raw_datasets.append(datasets["user_data"])

            for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets,
                                                     tasks):
                test_predictions = model.predict(tf_dataset)
                if "label" in raw_dataset:
                    test_metrics = compute_metrics(test_predictions,
                                                   raw_dataset["label"])
                    print(f"Test metrics ({task}):")
                    print(test_metrics)

                if is_regression:
                    predictions_to_write = np.squeeze(
                        test_predictions["logits"])
                else:
                    predictions_to_write = np.argmax(
                        test_predictions["logits"], axis=1)

                output_predict_file = os.path.join(
                    training_args.output_dir, f"predict_results_{task}.txt")
                with open(output_predict_file, "w") as writer:
                    logger.info(
                        f"***** Writing prediction results for {task} *****")
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions_to_write):
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
                        else:
                            item = model.config.id2label[item]
                            writer.write(f"{index}\t{item}\n")
Exemplo n.º 29
0
def main():
    args = parse_args()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_semantic_segmentation_no_trainer", args)

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
    # in the environment
    accelerator = (Accelerator(log_with=args.report_to,
                               logging_dir=args.output_dir)
                   if args.with_tracking else Accelerator())
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    # We set device_specific to True as we want different data augmentation per device.
    if args.seed is not None:
        set_seed(args.seed, device_specific=True)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Load dataset
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # TODO support datasets from local folders
    dataset = load_dataset(args.dataset_name, cache_dir=args.cache_dir)

    # Rename column names to standardized names (only "image" and "label" need to be present)
    if "pixel_values" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"pixel_values": "image"})
    if "annotation" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"annotation": "label"})

    # If we don't have a validation split, split off a percentage of train as validation.
    args.train_val_split = None if "validation" in dataset.keys(
    ) else args.train_val_split
    if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    if args.dataset_name == "scene_parse_150":
        repo_id = "datasets/huggingface/label-files"
        filename = "ade20k-id2label.json"
    else:
        repo_id = f"datasets/{args.dataset_name}"
        filename = "id2label.json"
    id2label = json.load(open(hf_hub_download(repo_id, filename), "r"))
    id2label = {int(k): v for k, v in id2label.items()}
    label2id = {v: k for k, v in id2label.items()}

    # Load pretrained model and feature extractor
    config = AutoConfig.from_pretrained(args.model_name_or_path,
                                        id2label=id2label,
                                        label2id=label2id)
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        args.model_name_or_path)
    model = AutoModelForSemanticSegmentation.from_pretrained(
        args.model_name_or_path, config=config)

    # Preprocessing the datasets
    # Define torchvision transforms to be applied to each image + target.
    # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
    # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
    train_transforms = Compose([
        ReduceLabels() if args.reduce_labels else Identity(),
        RandomCrop(size=feature_extractor.size),
        RandomHorizontalFlip(flip_prob=0.5),
        PILToTensor(),
        ConvertImageDtype(torch.float),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])
    # Define torchvision transform to be applied to each image.
    # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
    val_transforms = Compose([
        ReduceLabels() if args.reduce_labels else Identity(),
        Resize(size=(feature_extractor.size, feature_extractor.size)),
        PILToTensor(),
        ConvertImageDtype(torch.float),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])

    def preprocess_train(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"],
                                 example_batch["label"]):
            image, target = train_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = dict()
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    def preprocess_val(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"],
                                 example_batch["label"]):
            image, target = val_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = dict()
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    with accelerator.main_process_first():
        train_dataset = dataset["train"].with_transform(preprocess_train)
        eval_dataset = dataset["validation"].with_transform(preprocess_val)

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=default_data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=default_data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    optimizer = torch.optim.AdamW(
        list(model.parameters()),
        lr=args.learning_rate,
        betas=[args.adam_beta1, args.adam_beta2],
        eps=args.adam_epsilon,
    )

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps /
                                      num_update_steps_per_epoch)

    # Instantiate metric
    metric = evaluate.load("mean_iou")

    # We need to initialize the trackers we use, and also store our configuration.
    # We initialize the trackers only on main process because `accelerator.log`
    # only logs on main process and we don't want empty logs/runs on other processes.
    if args.with_tracking:
        if accelerator.is_main_process:
            experiment_config = vars(args)
            # TensorBoard cannot log Enums, need the raw value
            experiment_config["lr_scheduler_type"] = experiment_config[
                "lr_scheduler_type"].value
            accelerator.init_trackers("semantic_segmentation_no_trainer",
                                      experiment_config)

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        if args.with_tracking:
            total_loss = 0
        model.train()
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

                    if args.push_to_hub and epoch < args.num_train_epochs - 1:
                        accelerator.wait_for_everyone()
                        unwrapped_model = accelerator.unwrap_model(model)
                        unwrapped_model.save_pretrained(
                            args.output_dir,
                            is_main_process=accelerator.is_main_process,
                            save_function=accelerator.save,
                        )
                        if accelerator.is_main_process:
                            feature_extractor.save_pretrained(args.output_dir)
                            repo.push_to_hub(
                                commit_message=
                                f"Training in progress {completed_steps} steps",
                                blocking=False,
                                auto_lfs_prune=True,
                            )

            if completed_steps >= args.max_train_steps:
                break

        logger.info("***** Running evaluation *****")
        model.eval()
        samples_seen = 0
        for step, batch in enumerate(
                tqdm(eval_dataloader,
                     disable=not accelerator.is_local_main_process)):
            with torch.no_grad():
                outputs = model(**batch)

            upsampled_logits = torch.nn.functional.interpolate(
                outputs.logits,
                size=batch["labels"].shape[-2:],
                mode="bilinear",
                align_corners=False)
            predictions = upsampled_logits.argmax(dim=1)

            predictions, references = accelerator.gather(
                (predictions, batch["labels"]))

            # If we are in a multiprocess environment, the last batch has duplicates
            if accelerator.num_processes > 1:
                if step == len(eval_dataloader) - 1:
                    predictions = predictions[:len(eval_dataloader.dataset) -
                                              samples_seen]
                    references = references[:len(eval_dataloader.dataset) -
                                            samples_seen]
                else:
                    samples_seen += references.shape[0]

            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metrics = metric.compute(
            num_labels=len(id2label),
            ignore_index=255,
            reduce_labels=False,  # we've already reduced the labels before
        )
        logger.info(f"epoch {epoch}: {eval_metrics}")

        if args.with_tracking:
            accelerator.log(
                {
                    "mean_iou": eval_metrics["mean_iou"],
                    "mean_accuracy": eval_metrics["mean_accuracy"],
                    "overall_accuracy": eval_metrics["overall_accuracy"],
                    "train_loss": total_loss.item() / len(train_dataloader),
                    "epoch": epoch,
                    "step": completed_steps,
                },
                step=completed_steps,
            )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir,
                is_main_process=accelerator.is_main_process,
                save_function=accelerator.save)
            if accelerator.is_main_process:
                feature_extractor.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save)
        if accelerator.is_main_process:
            feature_extractor.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)

            with open(os.path.join(args.output_dir, "all_results.json"),
                      "w") as f:
                json.dump(
                    {
                        "eval_overall_accuracy":
                        eval_metrics["overall_accuracy"]
                    }, f)
Exemplo n.º 30
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_xnli", model_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
    if training_args.do_train:
        if model_args.train_language is None:
            train_dataset = load_dataset(
                "xnli",
                model_args.language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
        else:
            train_dataset = load_dataset(
                "xnli",
                model_args.train_language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
        eval_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="validation",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
        predict_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="test",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        label_list = predict_dataset.features["label"].names

    # Labels
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )

    if training_args.do_train:
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )

    if training_args.do_predict:
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    # Get the metric function
    metric = evaluate.load("xnli")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.save_model()  # Saves the tokenizer too for easy upload

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")

        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        predictions = np.argmax(predictions, axis=1)
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
        if trainer.is_world_process_zero():
            with open(output_predict_file, "w") as writer:
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")