Exemplo n.º 1
0
def lrcn_test(X, y):
    auc = []
    pr = []
    sr = []
    for i in range(0, 10):
        model = keras.models.load_model(
            '../saved_models/LRCN/lrcn_' + str(i) + '.h5',
            custom_objects={
                'masked_loss_function': masked_loss_function,
                'masked_accuracy': masked_accuracy
            })
        score_for_each_drug = ROC_PR.ROC(model,
                                         X,
                                         y, ("LRCN" + "BO_delete"),
                                         True,
                                         bccdc=True)
        spec_recall, prec_recall = ROC_PR.PR(model, X, y, bccdc=True)

        # print('AUC-ROC:', score_for_each_drug)
        # print("recall at 95 spec: ", spec_recall)
        # print("precision recall: ", prec_recall)
        auc.append(score_for_each_drug)
        pr.append(prec_recall)
        sr.append(spec_recall)
    print(auc)
    print(pr)
    print(sr)
Exemplo n.º 2
0
def wnd_test(X, y):
    auc = []
    pr = []
    sr = []
    # X_val2 = X.tolist()
    # for i in range(0, len(X_val2)):
    #     X_val2[i] = X_val2[i][0:3967]
    # X = np.array(X_val2)
    for i in range(1, 11):
        model = keras.models.load_model(
            '../saved_models/WnD/WnD' + str(i) + '.h5',
            custom_objects={
                'masked_loss_function': masked_loss_function,
                'masked_accuracy': masked_accuracy
            })
        score_for_each_drug = ROC_PR.ROC(model,
                                         X,
                                         y, ("wide-n-deep" + "BO_delete"),
                                         True,
                                         bccdc=True)
        spec_recall, prec_recall = ROC_PR.PR(model, X, y, bccdc=True)

        # print('AUC-ROC:', score_for_each_drug)
        # print("recall at 95 spec: ", spec_recall)
        # print("precision recall: ", prec_recall)
        auc.append(score_for_each_drug)
        pr.append(prec_recall)
        sr.append(spec_recall)
    print(auc)
    print(pr)
    print(sr)
Exemplo n.º 3
0
def run_one_fold(model):
    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])
    history = model.fit(
        X_train,
        y_train,
        epochs=epochs,
        batch_size=128,
        # shuffle=True,
        verbose=2,
        validation_data=(X_val, y_val),
        callbacks=[MyCustomCallback()])

    score = ROC_PR.ROC_Score(model, X_val, y_val)
    score_test = ROC_PR.ROC_Score(model, X_test, y_test)
    score_for_each_drug = ROC_PR.ROC(model, X_test, y_test,
                                     ("wide-n-deep" + "BO_delete"), True)
    spec_recall, prec_recall = ROC_PR.PR(model, X_test, y_test)

    print('area under ROC curve for val:', score)
    print('area under ROC curve for test:', score_test)
    print(score_for_each_drug)
    print("recall at 95 spec: ", spec_recall)
    print("precision recall: ", prec_recall)

    string_random = get_random_string(17)
    print(string_random)
    model.save('wnd_' + string_random + '.h5')

    return score
Exemplo n.º 4
0
def model_CNN_LSTM_random_data(FrameSize, X, X_train, X_test, y_train, y_test,
                               epoch, earlyStopping, name):
    print(X.shape)
    print(FrameSize)
    model = Sequential()

    model.add(Dropout(0.3311428861138142))
    model.add(
        Conv1D(filters=4, kernel_size=6, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=4, padding='same'))
    model.add(Dropout(0.3311428861138142))
    model.add(
        Conv1D(filters=7, kernel_size=4, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=4, padding='same'))
    model.add(Dropout(0.3311428861138142))
    model.add(
        Conv1D(filters=6, kernel_size=6, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=4, padding='same'))
    model.add(Dropout(0.3311428861138142))
    model.add(
        Conv1D(filters=4, kernel_size=4, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=4, padding='same'))

    model.add(LSTM(425, return_sequences=True, recurrent_dropout=0.3))
    model.add(Dropout(0.3311428861138142))
    model.add(LSTM(189, return_sequences=True, recurrent_dropout=0.3))
    model.add(Dropout(0.3311428861138142))
    model.add(LSTM(283, return_sequences=True, recurrent_dropout=0.3))
    model.add(Dropout(0.3311428861138142))
    model.add(LSTM(333, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.3311428861138142))

    model.add(Dense(331))
    model.add(Dropout(0.3311428861138142))
    model.add(Dense(12, activation='sigmoid'))

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])

    history = model.fit(X_train,
                        y_train,
                        epochs=epoch,
                        batch_size=128,
                        verbose=2,
                        validation_data=(X_test, y_test),
                        callbacks=[
                            earlyStopping,
                            ModelCheckpoint('result/CNN256_LSTM128_64_2.h5',
                                            monitor='val_masked_accuracy',
                                            mode='max',
                                            save_best_only=True)
                        ])

    plot.plot(history, ("LRCN" + name))

    score = ROC_PR.ROC(model, X_test, y_test, ("LRCN" + name), True)
    return score, ROC_PR.ROC_Score(model, X_train, y_train, limited=False)
Exemplo n.º 5
0
def model_CNN_LSTM_time(FrameSize, X, X_train, X_test, y_train, y_test, epoch,
                        earlyStopping, name):
    print(X.shape)
    print(X_train.shape)
    print(X_test.shape)
    print(FrameSize)
    print(y_train.shape)
    print(y_test.shape)
    X_train = X_train.reshape(X_train.shape[0], X_train.shape[1],
                              X_train.shape[2], 1)
    X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2],
                            1)
    # y_train = y_train.reshape(7060, 12, 1)
    # y_test = y_test.reshape(785, 12, 1)
    model = Sequential()
    model.add(Dropout(0.1))
    model.add(
        TimeDistributed(
            Conv1D(filters=8, kernel_size=3, activation='relu',
                   padding='same')))
    model.add(TimeDistributed(MaxPooling1D(pool_size=3, padding='same')))
    model.add(
        TimeDistributed(
            Conv1D(filters=8, kernel_size=3, activation='relu',
                   padding='same')))
    model.add(TimeDistributed(MaxPooling1D(pool_size=3, padding='same')))
    model.add(TimeDistributed(Flatten()))

    model.add(LSTM(518, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.1))

    model.add(Dense(64))
    model.add(Dropout(0.1))

    model.add(Dense(12, activation='sigmoid'))

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])

    history = model.fit(X_train,
                        y_train,
                        epochs=epoch,
                        batch_size=128,
                        verbose=2,
                        validation_data=(X_test, y_test),
                        callbacks=[
                            earlyStopping,
                            ModelCheckpoint('result/CNN256_LSTM128_64_2.h5',
                                            monitor='val_masked_accuracy',
                                            mode='max',
                                            save_best_only=True)
                        ])

    plot.plot(history, ("LRCN" + name))

    score = ROC_PR.ROC(model, X_test, y_test, ("LRCN" + name), True)
    return score, ROC_PR.ROC_Score(model, X_train, y_train, limited=False)
Exemplo n.º 6
0
def model_256_128_64_2_100Ep(FrameSize, X, X_train, X_test, y_train, y_test):
    model = Sequential()
    # model.add(Embedding(2, 50, input_length=None))
    # model.add(LSTM(256, return_sequences=True))

    model.add(
        LSTM(256,
             input_shape=(FrameSize, X[0].shape[1]),
             return_sequences=True,
             recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.2))
    model.add(LSTM(128, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.2))
    model.add(Dense(64))
    model.add(Dropout(0.2))
    model.add(Dense(2, activation='softmax'))

    model.compile(loss='categorical_crossentropy',
                  optimizer='Adam',
                  metrics=['accuracy'])

    history = model.fit(X_train,
                        y_train,
                        epochs=100,
                        batch_size=128,
                        shuffle=True,
                        verbose=2,
                        validation_data=(X_test, y_test))

    plot.plot(history, "One_256_128_64_2_100Ep")

    ROC_PR.ROC(model, X_test, y_test, "One_256_128_64_2_100Ep")
Exemplo n.º 7
0
def model_CNN_LSTM_limited_1(FrameSize, X, X_train, X_test, y_train, y_test,
                             epoch, earlyStopping, name):
    print(X.shape)
    print(FrameSize)
    model = Sequential()
    model.add(Dropout(0.43369355853937297))
    model.add(
        Conv1D(filters=5, kernel_size=4, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=4, padding='same'))
    model.add(
        Conv1D(filters=7, kernel_size=7, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=7, padding='same'))

    model.add(LSTM(398, return_sequences=True, recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.43369355853937297))
    model.add(LSTM(106, return_sequences=True, recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.43369355853937297))
    model.add(LSTM(475, return_sequences=True, recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.43369355853937297))
    model.add(LSTM(264, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.43369355853937297))

    model.add(Dense(352))
    model.add(Dropout(0.43369355853937297))
    model.add(Dense(378))
    model.add(Dropout(0.43369355853937297))

    model.add(Dense(7, activation='sigmoid'))

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])

    history = model.fit(
        X_train,
        y_train,
        epochs=epoch,
        batch_size=128,
        # shuffle=True,
        verbose=2,
        validation_data=(X_test, y_test),
        callbacks=[
            earlyStopping,
            ModelCheckpoint('result/CNN_LSTM_limited_1.h5',
                            monitor='val_masked_accuracy',
                            mode='max',
                            save_best_only=True)
        ])

    # plot_model(model, to_file='model_plot.png', show_shapes=True)

    plot.plot(history, ("CNN_LSTM_limited_1" + name))

    score = ROC_PR.ROC(model,
                       X_test,
                       y_test, ("CNN_LSTM_limited_1" + name),
                       True,
                       limited=True)
    return score
Exemplo n.º 8
0
def rf_kfold(X, y, i):
    global res
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.1,
                                                        random_state=42,
                                                        shuffle=True)

    X = np.append(X_train, X_test, axis=0)
    y = np.append(y_train, y_test, axis=0)

    cvscores1 = []

    for i2 in range(0, 10):
        length = int(len(X) / 10)
        if i2 == 0:
            X_train = X[length:]
            X_test = X[0:length]
            y_train = y[length:]
            y_test = y[0:length]
        elif i2 != 9:
            X_train = np.append(X[0:length * i2],
                                X[length * (i2 + 1):],
                                axis=0)
            X_test = X[length * i2:length * (i2 + 1)]
            y_train = np.append(y[0:length * i2],
                                y[length * (i2 + 1):],
                                axis=0)
            y_test = y[length * i2:length * (i2 + 1)]
        else:
            X_train = X[0:length * i2]
            X_test = X[length * i2:]
            y_train = y[0:length * i2]
            y_test = y[length * i2:]

        from sklearn.ensemble import RandomForestClassifier
        rf_model_linear = RandomForestClassifier(n_estimators=140,
                                                 min_samples_split=4,
                                                 bootstrap=False,
                                                 max_depth=50).fit(
                                                     X_train, y_train)
        score1 = ROC_PR.ROC_ML(rf_model_linear,
                               X_test,
                               y_test,
                               "LR",
                               i,
                               rf=True)

        accuracy = rf_model_linear.score(X_test, y_test)
        print(accuracy)
        res.append(accuracy)

        print("Area for 1")
        cvscores1.append(score1)

    f = open('result/RFResult' + str(i) + '.txt', 'w')
    for ele in cvscores1:
        f.write(str(ele) + '\n')
Exemplo n.º 9
0
def model_lrcn_simple(FrameSize,
                      X,
                      X_train,
                      X_test,
                      y_train,
                      y_test,
                      epoch,
                      earlyStopping,
                      name,
                      limited=False):
    print(X.shape)
    print(FrameSize)
    model = Sequential()
    model.add(Dropout(0.2))
    model.add(
        Conv1D(filters=5, kernel_size=5, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=3, padding='same'))
    model.add(LSTM(256, return_sequences=True, recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.2))
    model.add(LSTM(128, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.2))
    model.add(Dense(128))
    model.add(Dropout(0.2))
    if limited:
        model.add(Dense(7, activation='sigmoid'))
    else:
        model.add(Dense(12, activation='sigmoid'))

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])

    history = model.fit(X_train,
                        y_train,
                        epochs=epoch,
                        batch_size=128,
                        verbose=2,
                        validation_data=(X_test, y_test),
                        callbacks=[
                            earlyStopping,
                            ModelCheckpoint('result/CNN256_LSTM128_64_2.h5',
                                            monitor='val_masked_accuracy',
                                            mode='max',
                                            save_best_only=True)
                        ])

    plot.plot(history, ("LRCN" + name))

    score = ROC_PR.ROC(model,
                       X_test,
                       y_test, ("LRCN" + name),
                       True,
                       limited=limited)
    return score
Exemplo n.º 10
0
def lr_kfold(X, y, i):
    global res
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.1,
                                                        random_state=42,
                                                        shuffle=True)

    X = np.append(X_train, X_test, axis=0)
    y = np.append(y_train, y_test, axis=0)

    cvscores1 = []

    for i2 in range(0, 10):
        length = int(len(X) / 10)
        if i2 == 0:
            X_train = X[length:]
            X_test = X[0:length]
            y_train = y[length:]
            y_test = y[0:length]
        elif i2 != 9:
            X_train = np.append(X[0:length * i2],
                                X[length * (i2 + 1):],
                                axis=0)
            X_test = X[length * i2:length * (i2 + 1)]
            y_train = np.append(y[0:length * i2],
                                y[length * (i2 + 1):],
                                axis=0)
            y_test = y[length * i2:length * (i2 + 1)]
        else:
            X_train = X[0:length * i2]
            X_test = X[length * i2:]
            y_train = y[0:length * i2]
            y_test = y[length * i2:]

        from sklearn.linear_model import LogisticRegression
        lr_model_linear = LogisticRegression(C=1,
                                             penalty='l2',
                                             solver='newton-cg',
                                             max_iter=2677).fit(
                                                 X_train, y_train)
        score1 = ROC_PR.ROC_ML(lr_model_linear, X_test, y_test, "LR", i)

        accuracy = lr_model_linear.score(X_test, y_test)
        print(accuracy)
        res.append(accuracy)

        print("Area for 1")
        cvscores1.append(score1)

    f = open('result/LRResult' + str(i) + '.txt', 'w')
    for ele in cvscores1:
        f.write(str(ele) + '\n')
Exemplo n.º 11
0
def gbt_test(X, y):
    auc = []
    pr = []
    sr = []
    drugs = [0, 1, 2, 6, 8]

    # for i in range(0, len(y[0])):
    #     X_val2 = X.tolist()
    #     y_val2 = y[:, i]
    #     y_val2 = y_val2.tolist()
    #
    #     for i2 in range(len(y_val2) - 1, -1, -1):
    #         if y_val2[i2] != 0.0 and y_val2[i2] != 1.0:
    #             del y_val2[i2]
    #             del X_val2[i2]

    for i in range(0, 5):
        a, p, s = [], [], []
        for j in range(0, len(drugs)):
            X_val2 = X.tolist()
            # for i2 in range(0, len(X_val2)):
            #     X_val2[i2] = X_val2[i2][0:3967]
            y_val2 = y[:, j]
            y_val2 = y_val2.tolist()

            for i2 in range(len(y_val2) - 1, -1, -1):
                if y_val2[i2] != 0.0 and y_val2[i2] != 1.0:
                    del y_val2[i2]
                    del X_val2[i2]

            model = pickle.load(
                open(
                    '../saved_models/GBT/gbt' + str(drugs[j]) + '_' + str(i) +
                    '.sav', 'rb'))
            score_test, score_sr, score_pr = ROC_PR.ROC_ML(model,
                                                           np.array(X_val2),
                                                           np.array(y_val2),
                                                           "GBT",
                                                           0,
                                                           xgb=True)

            a.append(score_test)
            p.append(score_pr)
            s.append(score_sr)
        auc.append(a)
        pr.append(p)
        sr.append(a)
    print(auc)
    print(pr)
    print(sr)
Exemplo n.º 12
0
def run_ELI5(model, X_train, X_test, X_val, y_train, y_test, y_val):
    X_train2 = np.array(X_train).astype(np.float)
    X_test2 = np.array(X_test).astype(np.float)
    X_val2 = np.array(X_val).astype(np.float)

    y_train2 = np.array(y_train).astype(np.float)
    y_test2 = np.array(y_test).astype(np.float)
    y_val2 = np.array(y_val).astype(np.float)

    score = ROC_PR.ROC_Score(model, X_val2, y_val2)
    score_test = ROC_PR.ROC_Score(model, X_test2, y_test2)
    # score_for_each_drug = ROC_PR.ROC(model, X_test2, y_test2, ("LRCN" + "BO_delete"), True)
    spec_recall, prec_recall = ROC_PR.PR(model, X_test2, y_test2)

    print('area under ROC curve for val:', score)
    print('area under ROC curve for test:', score_test)
    print("recall at 95 spec: ", spec_recall)
    print("precision recall: ", prec_recall)

    def score(X_test, y_test):
        return ROC_PR.ROC_Score(model, X_test, y_test)

    from eli5.permutation_importance import get_score_importances

    feature_score = []

    for i in range(0, len(X_test2[0])):
        lst = []
        lst.append(i)
        base_score, score_decreases = get_score_importances(
            score, X_test2, y_test2, n_iter=1, columns_to_shuffle=lst)
        feature_importances = np.mean(score_decreases, axis=0)
        feature_score.append(feature_importances[0])
        print(i)

    print(feature_score)
Exemplo n.º 13
0
def svm_kfold(X, y, i):
    global res
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.1,
                                                        random_state=42,
                                                        shuffle=True)

    X = np.append(X_train, X_test, axis=0)
    y = np.append(y_train, y_test, axis=0)

    cvscores1 = []

    for i2 in range(0, 10):
        length = int(len(X) / 10)
        if i2 == 0:
            X_train = X[length:]
            X_test = X[0:length]
            y_train = y[length:]
            y_test = y[0:length]
        elif i2 != 9:
            X_train = np.append(X[0:length * i2],
                                X[length * (i2 + 1):],
                                axis=0)
            X_test = X[length * i2:length * (i2 + 1)]
            y_train = np.append(y[0:length * i2],
                                y[length * (i2 + 1):],
                                axis=0)
            y_test = y[length * i2:length * (i2 + 1)]
        else:
            X_train = X[0:length * i2]
            X_test = X[length * i2:]
            y_train = y[0:length * i2]
            y_test = y[length * i2:]

        from sklearn.svm import SVC
        svm_model_linear = SVC(kernel='linear', C=0.1).fit(X_train, y_train)
        score1 = ROC_PR.ROC_ML(svm_model_linear, X_test, y_test, "SVM", i2)
        accuracy = svm_model_linear.score(X_test, y_test)
        print(accuracy)
        res.append(accuracy)

        print("Area for 1")
        cvscores1.append(score1)

    f = open('result/SVMResult' + str(i) + '.txt', 'w')
    for ele in cvscores1:
        f.write(str(ele) + '\n')
Exemplo n.º 14
0
def svm(X, y, i):
    global res
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.1,
                                                        random_state=42,
                                                        shuffle=True)
    cvscores1 = []

    from sklearn.svm import SVC
    svm_model_linear = SVC(kernel='linear', C=0.1).fit(X_train, y_train)
    score1 = ROC_PR.ROC_ML(svm_model_linear, X_test, y_test, "SVM", i)
    accuracy = svm_model_linear.score(X_test, y_test)
    print(accuracy)
    print(score1)
    print("_______________________________")
    res.append(accuracy)

    return score1
Exemplo n.º 15
0
def model_256_128_64_2BS(FrameSize, X, X_train, X_test, y_train, y_test,
                         epoch):
    model = Sequential()
    # model.add(Embedding(2, 50, input_length=None))
    # model.add(LSTM(256, return_sequences=True))

    model.add(
        LSTM(256,
             input_shape=(FrameSize, X[0].shape[1]),
             return_sequences=True,
             recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.2))
    model.add(LSTM(128, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.2))
    model.add(Dense(64))
    model.add(Dropout(0.2))
    model.add(Dense(2, activation='sigmoid'))

    model.compile(loss='binary_crossentropy',
                  optimizer='Adam',
                  metrics=['accuracy'])

    history = model.fit(X_train,
                        y_train,
                        epochs=epoch,
                        batch_size=128,
                        verbose=2,
                        shuffle=True,
                        validation_data=(X_test, y_test),
                        callbacks=[
                            ModelCheckpoint('result/One_256_128_64_2BS.h5',
                                            monitor='val_accuracy',
                                            mode='max',
                                            save_best_only=True)
                        ])

    # model.save_weights("result/One_256_128_64_2BS.h5")

    plot.plot(history, "One_256_128_64_2BS")

    ROC_PR.ROC(model, X_test, y_test, "One_256_128_64_2BS")
Exemplo n.º 16
0
def get_model_LR(C=1, penalty=1, solver=1, l1_ratio=1, max_iter=2):
    from sklearn.linear_model import LogisticRegression
    all_scores = 0
    C = 10 ** (int(C))
    penalty = int(penalty)
    solver = int(solver)
    l1_ratio = l1_ratio / 10
    max_iter = 10 ** max_iter
    print(max_iter)
    for i in range(0, len(labels)):
        dfCurrentDrug = labels[i]
        X = df_train.values.tolist()
        y = dfCurrentDrug.values.tolist()
        for i2 in range(len(y) - 1, -1, -1):
            if y[i2][0] != 0.0 and y[i2][0] != 1.0:
                del y[i2]
                del X[i2]
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42,
                                                            shuffle=True)
        if penalty == 0:
            lr_model_linear = LogisticRegression(C=C, penalty='l1', solver='liblinear', max_iter=max_iter).fit(X_train, y_train)
        elif penalty == 1:
            if solver == 0:
                lr_model_linear = LogisticRegression(C=C, penalty='l2', solver='newton-cg', max_iter=max_iter).fit(X_train, y_train)
            elif solver == 1:
                lr_model_linear = LogisticRegression(C=C, penalty='l2', solver='sag', max_iter=max_iter).fit(X_train, y_train)
            else:
                lr_model_linear = LogisticRegression(C=C, penalty='l2', solver='lbfgs', max_iter=max_iter).fit(X_train, y_train)
        elif penalty == 2:
            lr_model_linear = LogisticRegression(C=C, penalty='elasticnet', solver='saga', max_iter=max_iter, l1_ratio=l1_ratio).fit(X_train, y_train)
        else:
            lr_model_linear = LogisticRegression(C=C, penalty='none', max_iter=max_iter).fit(X_train, y_train)

        score1 = ROC_PR.ROC_ML(lr_model_linear, X_test, y_test, "LR", 0)
        # accuracy = svm_model_linear.score(X_test, y_test)
        print(i, flush=True)
        print(score1, flush=True)
        all_scores = all_scores + score1

    print(all_scores / len(labels), flush=True)
    return all_scores / len(labels)
def get_model_SVM(kernel=0, degree=1, C=1, gamma=1):
    from sklearn.svm import SVC
    all_scores = 0
    C = 10**(int(C))
    gamma = 10**(int(gamma))
    degree = int(degree)
    kernel = int(kernel)

    for i in range(0, len(labels)):
        dfCurrentDrug = labels[i]
        X = df_train.values.tolist()
        y = dfCurrentDrug.values.tolist()
        for i2 in range(len(y) - 1, -1, -1):
            if y[i2][0] != 0.0 and y[i2][0] != 1.0:
                del y[i2]
                del X[i2]
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.1,
                                                            random_state=42,
                                                            shuffle=True)

        if kernel == 0:
            svm_model_linear = SVC(kernel='linear', C=C).fit(X_train, y_train)
        elif kernel == 1:
            svm_model_linear = SVC(kernel='poly', C=C,
                                   degree=degree).fit(X_train, y_train)
        else:
            svm_model_linear = SVC(kernel='rbf', C=C,
                                   gamma=gamma).fit(X_train, y_train)

        try:
            score1 = ROC_PR.ROC_ML(svm_model_linear, X_test, y_test, "SVM", 0)
        except:
            score1 = svm_model_linear.score(X_test, y_test)
        print(i, flush=True)
        print(score1, flush=True)
        all_scores = all_scores + score1

    print(all_scores / len(labels), flush=True)
    return all_scores / len(labels)
Exemplo n.º 18
0
def lr(X, y, i):
    global res
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.1,
                                                        random_state=42,
                                                        shuffle=True)
    cvscores1 = []

    from sklearn.linear_model import LogisticRegression
    lr_model_linear = LogisticRegression(C=0.1,
                                         penalty='l2',
                                         solver='newton-cg').fit(
                                             X_train, y_train)
    score1 = ROC_PR.ROC_ML(lr_model_linear, X_test, y_test, "LR", i)
    accuracy = lr_model_linear.score(X_test, y_test)
    print(accuracy)
    print(score1)
    print("_______________________________")
    res.append(accuracy)

    return score1
Exemplo n.º 19
0
def run_single_fold(model):
    X_train2 = np.array(X_train).astype(np.float)
    X_test2 = np.array(X_test).astype(np.float)
    X_val2 = np.array(X_val).astype(np.float)

    y_train2 = np.array(y_train).astype(np.float)
    y_test2 = np.array(y_test).astype(np.float)
    y_val2 = np.array(y_val).astype(np.float)

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])
    # Train the model with the train dataset.
    history = model.fit(
        X_train2,
        y_train2,
        epochs=epochs,
        batch_size=128,
        # shuffle=True,
        verbose=2,
        validation_data=(X_val2, y_val2))

    # score = ROC_PR.ROC_Score(model, X_val2, y_val2)
    # score_for_each_drug = ROC_PR.ROC(model, X_test2, y_test2, ("LRCN" + "BO_delete"), True)

    y_p = model.predict(X_test2)
    i = 0
    while i < len(y_test2):
        if y_test2[i] != 0 and y_test2[i] != 1:
            y_test2 = np.delete(y_test2, i)
            y_p = np.delete(y_p, i)
        else:
            i = i + 1
    score = ROC_PR.ROC_maker(y_test, y_p, "asd")
    print('area under ROC curve for val:', score)
    # print(score_for_each_drug)

    return score
Exemplo n.º 20
0
def model_CNN256_LSTM128_64_2(FrameSize, X, X_train, X_test, y_train, y_test,
                              epoch):
    model = Sequential()
    model.add(Dropout(0.2))
    model.add(
        Conv1D(filters=5, kernel_size=3, activation='relu', padding='same'))
    model.add(MaxPooling1D(pool_size=3))
    model.add(LSTM(256, return_sequences=True, recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.2))
    model.add(LSTM(128, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.2))
    model.add(Dense(64))
    model.add(Dropout(0.2))
    model.add(Dense(2, activation='sigmoid'))

    model.compile(loss='categorical_crossentropy',
                  optimizer='Adam',
                  metrics=['accuracy'])

    history = model.fit(X_train,
                        y_train,
                        epochs=epoch,
                        batch_size=128,
                        shuffle=True,
                        verbose=2,
                        validation_data=(X_test, y_test),
                        callbacks=[
                            ModelCheckpoint('result/CNN256_LSTM128_64_2.h5',
                                            monitor='accuracy',
                                            mode='max',
                                            save_best_only=True)
                        ])

    # plot_model(model, to_file='model_plot.png', show_shapes=True)

    plot.plot(history, "One_CNN256_LSTM128_64_2")

    ROC_PR.ROC(model, X_test, y_test, "One_CNN256_LSTM128_64_2", False)
Exemplo n.º 21
0
def model_256_128_64_2(FrameSize, X, X_train, X_test, y_train, y_test, epoch,
                       earlyStopping):
    model = Sequential()
    model.add(
        LSTM(256,
             input_shape=(FrameSize, X[0].shape[1]),
             return_sequences=True,
             recurrent_dropout=0.3))
    model.add(SpatialDropout1D(0.2))
    model.add(LSTM(128, return_sequences=False, recurrent_dropout=0.3))
    model.add(Dropout(0.2))
    model.add(Dense(64))
    model.add(Dropout(0.2))
    model.add(Dense(12, activation='sigmoid'))

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])

    print(model.summary())

    history = model.fit(X_train,
                        y_train,
                        epochs=epoch,
                        batch_size=128,
                        shuffle=True,
                        verbose=2,
                        validation_data=(X_test, y_test),
                        callbacks=[
                            earlyStopping,
                            ModelCheckpoint('result/256_128_64_2.h5',
                                            monitor='val_masked_accuracy',
                                            mode='max',
                                            save_best_only=True)
                        ])

    plot.plot(history, "256_128_64_2")
    ROC_PR.ROC(model, X_test, y_test, "256_128_64_2", True)
Exemplo n.º 22
0
    def performance_calculation(self, array1, array2, array3):
        from evaluations import ROC_PR
        # print(array1)
        # print(array2)
        for i in range(len(array1) - 1, -1, -1):
            if array1[i] == -1:
                array1 = np.delete(array1, i)
                array2 = np.delete(array2, i, 0)
                array3 = np.delete(array3, i, 0)

        tn, fp, fn, tp = confusion_matrix(array1, array2).ravel()
        #         total=tn+fp+fn+tp
        #         acc= (tn+tp)/total
        sen = tp / (tp + fn)
        sps = tn / (tn + fp)

        fpr, tpr, thresholds = metrics.roc_curve(array1, array3)
        roc_auc = metrics.auc(fpr, tpr)

        precision = tp / (tp + fp)
        f1_score = 2 * (precision * sen) / (precision + sen)
        se95spe, pr = ROC_PR.SR_maker(array1, array3)
        return roc_auc, se95spe, pr, sen, sps, roc_auc, f1_score
Exemplo n.º 23
0
def original_score(df_train, labels):
    X, y, FrameSize = prepare_data(df_train, labels)

    scores = []

    for i in range(0, 10):
        print("fold: " + str(i))
        length = int(len(X) / 10)
        if i == 0:
            X_train = X[length:]
            X_test = X[0:length]
            y_train = y[length:]
            y_test = y[0:length]
        elif i != 9:
            X_train = np.append(X[0:length * i], X[length * (i + 1):], axis=0)
            X_test = X[length * i:length * (i + 1)]
            y_train = np.append(y[0:length * i], y[length * (i + 1):], axis=0)
            y_test = y[length * i:length * (i + 1)]
        else:
            X_train = X[0:length * i]
            X_test = X[length * i:]
            y_train = y[0:length * i]
            y_test = y[length * i:]

        X_train, X_val, y_train, y_val = train_test_split(X_train,
                                                          y_train,
                                                          test_size=0.1,
                                                          random_state=1,
                                                          shuffle=False)
        model = load_model(i)

        X_test2 = np.array(X_test).astype(np.float)
        y_test2 = np.array(y_test).astype(np.float)

        scores.append(ROC_PR.ROC_Score(model, X_test2, y_test2))

    return scores
def get_model_SVM_new(kernel=0, degree=1, C=1, gamma=1):
    from sklearn.svm import SVC
    all_scores = 0
    C = 10**(int(C))
    gamma = 10**(int(gamma))
    degree = int(degree)
    kernel = int(kernel)

    global X_train
    global X_test
    global X_val
    global y_train
    global y_test
    global y_val

    res_test = []
    res_val = []
    res_sr = []
    res_pr = []
    string_random = get_random_string(20)
    for i in range(0, len(y_train[0])):
        X_train2 = X_train.tolist()
        X_test2 = X_test.tolist()
        X_val2 = X_val.tolist()

        y_train2 = y_train[:, i]
        y_test2 = y_test[:, i]
        y_val2 = y_val[:, i]
        y_train2 = y_train2.tolist()
        y_test2 = y_test2.tolist()
        y_val2 = y_val2.tolist()

        for i2 in range(len(y_train2) - 1, -1, -1):
            if y_train2[i2] != 0.0 and y_train2[i2] != 1.0:
                del y_train2[i2]
                del X_train2[i2]

        for i2 in range(len(y_test2) - 1, -1, -1):
            if y_test2[i2] != 0.0 and y_test2[i2] != 1.0:
                del y_test2[i2]
                del X_test2[i2]

        for i2 in range(len(y_val2) - 1, -1, -1):
            if y_val2[i2] != 0.0 and y_val2[i2] != 1.0:
                del y_val2[i2]
                del X_val2[i2]
        # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42,
        #                                                     shuffle=True)

        if kernel == 0:
            svm_model_linear = SVC(kernel='linear',
                                   C=C).fit(X_train2, y_train2)
        elif kernel == 1:
            svm_model_linear = SVC(kernel='poly', C=C,
                                   degree=degree).fit(X_train2, y_train2)
        else:
            svm_model_linear = SVC(kernel='rbf', C=C,
                                   gamma=gamma).fit(X_train2, y_train2)
        # try:
        #     score1 = ROC_PR.ROC_ML(svm_model_linear, X_test, y_test, "SVM", 0)
        # except:
        #     score1 = svm_model_linear.score(X_test, y_test)

        score_val, _, _ = ROC_PR.ROC_ML(svm_model_linear, X_val2, y_val2, "LR",
                                        0)
        score_test, score_sr, score_pr = ROC_PR.ROC_ML(svm_model_linear,
                                                       X_test2, y_test2, "LR",
                                                       0)
        print(i, flush=True)
        # print(score1, flush=True)
        res_test.append(score_test)
        res_val.append(score_val)
        res_sr.append(score_sr)
        res_pr.append(score_pr)
        all_scores = all_scores + score_val
        print('svm' + str(i) + string_random + '.sav')
        pickle.dump(svm_model_linear,
                    open('svm' + str(i) + string_random + '.sav', 'wb'))

    global rf_val_score, rf_test_score
    res_val.append(all_scores / len(y_train[0]))
    rf_val_score.append(res_val)
    rf_test_score.append(res_test)
    rf_sr_score.append(res_sr)

    print("val score", res_val)
    print("test score", res_test)
    print("recall at 95 spec: ", res_sr)
    print("precision recall: ", res_pr)
    print(all_scores / len(y_train[0]), flush=True)
    print(string_random)
    return all_scores / len(y_train[0])
def get_model_GBT(n_estimators=10,
                  min_samples_split=2,
                  max_depth=1,
                  random_state=0):
    import xgboost.sklearn as xgb
    all_scores = 0
    n_estimators = 10 * int(n_estimators)
    min_samples_split = int(min_samples_split)
    if random_state < 0:
        random_state = None
    else:
        random_state = int(random_state)
    if max_depth > 15:
        max_depth = None
    else:
        max_depth = 10 * int(max_depth)

    global X_train
    global X_test
    global X_val
    global y_train
    global y_test
    global y_val

    res_test = []
    res_val = []
    res_sr = []
    res_pr = []
    string_random = get_random_string(20)

    for i in range(0, len(y_train[0])):
        X_train2 = X_train.tolist()
        X_test2 = X_test.tolist()
        X_val2 = X_val.tolist()

        y_train2 = y_train[:, i]
        y_test2 = y_test[:, i]
        y_val2 = y_val[:, i]
        y_train2 = y_train2.tolist()
        y_test2 = y_test2.tolist()
        y_val2 = y_val2.tolist()

        for i2 in range(len(y_train2) - 1, -1, -1):
            if y_train2[i2] != 0.0 and y_train2[i2] != 1.0:
                del y_train2[i2]
                del X_train2[i2]

        for i2 in range(len(y_test2) - 1, -1, -1):
            if y_test2[i2] != 0.0 and y_test2[i2] != 1.0:
                del y_test2[i2]
                del X_test2[i2]

        for i2 in range(len(y_val2) - 1, -1, -1):
            if y_val2[i2] != 0.0 and y_val2[i2] != 1.0:
                del y_val2[i2]
                del X_val2[i2]
        # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42,
        #                                                     shuffle=True)

        param = {
            'n_estimators': n_estimators,
            'min_samples_split': min_samples_split,
            'random_state': random_state,
            'max_depth': max_depth
        }
        print(n_estimators)
        print(min_samples_split)
        print(random_state)
        print(max_depth)
        try:
            gbt_model = xgb.XGBModel(n_estimators=n_estimators,
                                     min_samples_split=min_samples_split,
                                     random_state=random_state,
                                     max_depth=max_depth).fit(
                                         np.array(X_train2),
                                         np.array(y_train2))
            score_val, _, _ = ROC_PR.ROC_ML(gbt_model,
                                            np.array(X_val2),
                                            np.array(y_val2),
                                            "GBT",
                                            0,
                                            xgb=True)
            score_test, score_sr, score_pr = ROC_PR.ROC_ML(gbt_model,
                                                           np.array(X_test2),
                                                           np.array(y_test2),
                                                           "GBT",
                                                           0,
                                                           xgb=True)
            print('gbt' + str(i) + string_random + '.sav')
            pickle.dump(gbt_model,
                        open('gbt' + str(i) + string_random + '.sav', 'wb'))
        except ():
            print("errorrrrrr in GBT", flush=True)
            score_test, score_sr, score_pr, score_val = 0, 0, 0, 0

        print(i, flush=True)
        # print(score1, flush=True)
        res_test.append(score_test)
        res_val.append(score_val)
        res_sr.append(score_sr)
        res_pr.append(score_pr)
        all_scores = all_scores + score_val

    global rf_val_score, rf_test_score
    res_val.append(all_scores / len(y_train[0]))
    rf_val_score.append(res_val)
    rf_test_score.append(res_test)
    rf_sr_score.append(res_sr)

    print("val score", res_val)
    print("test score", res_test)
    print("recall at 95 spec: ", res_sr)
    print("precision recall: ", res_pr)
    print(all_scores / len(y_train[0]), flush=True)

    print(string_random)

    return all_scores / len(y_train[0])
Exemplo n.º 26
0
def run_k_fold(model):
    global X_train, X_test, y_train, y_test
    global X, y, check
    if check == 0:
        check = 1
        X = np.append(X_train, X_test, axis=0)
        y = np.append(y_train, y_test, axis=0)
        X_train = 0
        X_test = 0
        y_train = 0
        y_test = 0

    cvscores = []
    scores_each_drug = []
    for i in range(0, 10):
        print("fold:" + str(i))
        length = int(len(X) / 10)
        if i == 0:
            X_train_tmp = X[length:]
            X_test_tmp = X[0:length]
            y_train_tmp = y[length:]
            y_test_tmp = y[0:length]
        elif i != 9:
            X_train_tmp = np.append(X[0:length * i],
                                    X[length * (i + 1):],
                                    axis=0)
            X_test_tmp = X[length * i:length * (i + 1)]
            y_train_tmp = np.append(y[0:length * i],
                                    y[length * (i + 1):],
                                    axis=0)
            y_test_tmp = y[length * i:length * (i + 1)]
        else:
            X_train_tmp = X[0:length * i]
            X_test_tmp = X[length * i:]
            y_train_tmp = y[0:length * i]
            y_test_tmp = y[length * i:]

        model.compile(loss=masked_loss_function,
                      optimizer='Adam',
                      metrics=[masked_accuracy])

        # plot_model(model, to_file='model_plot.png', show_shapes=True)

        history = model.fit(
            X_train_tmp,
            y_train_tmp,
            epochs=epochs,
            batch_size=128,
            # shuffle=True,
            verbose=2,
            validation_data=(X_test_tmp, y_test_tmp))

        score = ROC_PR.ROC_Score(model,
                                 X_train_tmp,
                                 y_train_tmp,
                                 limited=limited)
        print('area under ROC curve:', score)
        cvscores.append(score)
        scores_each_drug.append(
            ROC_PR.ROC(model, X_test_tmp, y_test_tmp,
                       ("LRCN" + "BO_delete" + str(i)), True))
    print(np.mean(cvscores))
    if np.mean(cvscores) > 0.97:
        model.save()
    print(scores_each_drug)
    return np.mean(cvscores)
Exemplo n.º 27
0
def model_CNN256_LSTM128_64_2(FrameSize,
                              X,
                              X_train,
                              X_test,
                              y_train,
                              y_test,
                              epoch,
                              earlyStopping,
                              name,
                              dropout2_rate,
                              dense_1,
                              filterCNN,
                              kernelCNN,
                              LSTM1,
                              LSTM2,
                              recurrent_dropout,
                              limited=False):
    print(X.shape)
    print(FrameSize)
    model = Sequential()
    # model.add(TimeDistributed(Conv1D(filters=1, kernel_size=3, activation='relu', padding='same', input_shape=(FrameSize, X[0].shape[1], 1))))
    # model.add(TimeDistributed(MaxPooling1D(pool_size=3)))
    # model.add(TimeDistributed(Flatten()))
    model.add(Dropout(dropout2_rate))
    # model.add(Conv1D(filters=5, kernel_size=3, activation='relu', padding='same'))
    model.add(
        Conv1D(filters=filterCNN,
               kernel_size=kernelCNN,
               activation='relu',
               padding='same'))
    model.add(MaxPooling1D(pool_size=3, padding='same'))
    # model.add(TimeDistributed(Flatten()))
    # model.add(LSTM(256, return_sequences=True, recurrent_dropout=0.3))
    model.add(
        LSTM(LSTM1, return_sequences=True,
             recurrent_dropout=recurrent_dropout))
    model.add(SpatialDropout1D(dropout2_rate))
    # model.add(LSTM(128, return_sequences=False, recurrent_dropout=0.3))
    model.add(
        LSTM(LSTM2,
             return_sequences=False,
             recurrent_dropout=recurrent_dropout))
    model.add(Dropout(dropout2_rate))
    # model.add(Dense(64))
    model.add(Dense(dense_1))
    model.add(Dropout(dropout2_rate))
    if limited:
        model.add(Dense(7, activation='sigmoid'))
    else:
        model.add(Dense(12, activation='sigmoid'))

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])

    history = model.fit(
        X_train,
        y_train,
        epochs=epoch,
        batch_size=128,
        # shuffle=True,
        verbose=2,
        validation_data=(X_test, y_test),
        callbacks=[
            earlyStopping,
            ModelCheckpoint('result/CNN256_LSTM128_64_2.h5',
                            monitor='val_masked_accuracy',
                            mode='max',
                            save_best_only=True)
        ])

    # plot_model(model, to_file='model_plot.png', show_shapes=True)

    plot.plot(history, ("LRCN" + name))

    score = ROC_PR.ROC(model,
                       X_test,
                       y_test, ("LRCN" + name),
                       True,
                       limited=limited)
    return score
Exemplo n.º 28
0
def run_one_fold(model):
    #
    # X_train2 = tf.cast(X_train, tf.float32)
    # X_test2 = tf.cast(X_test, tf.float32)
    # X_val2 = tf.cast(X_val, tf.float32)
    # y_train2 = tf.cast(y_train, tf.float32)
    # y_test2 = tf.cast(y_test, tf.float32)
    # y_val2 = tf.cast(y_val, tf.float32)

    # X_train2 = np.array(X_train)
    # X_train2 = tf.convert_to_tensor(X_train2,dtype=tf.float32)
    # X_train2 = tf.cast(X_train2, tf.float32)

    # y_train2 = np.array(y_train)
    # y_train2 = tf.convert_to_tensor(y_train2, dtype=tf.float32)
    # y_train2 = np.array(y_train)
    # y_train2 = tf.cast(y_train2, tf.float32)

    # print(X_train.)
    # Train the model for a specified number of epochs.

    X_train2 = np.array(X_train).astype(np.float)
    X_test2 = np.array(X_test).astype(np.float)
    X_val2 = np.array(X_val).astype(np.float)

    y_train2 = np.array(y_train).astype(np.float)
    y_test2 = np.array(y_test).astype(np.float)
    y_val2 = np.array(y_val).astype(np.float)

    model.compile(loss=masked_loss_function,
                  optimizer='Adam',
                  metrics=[masked_accuracy])
    # Train the model with the train dataset.
    history = model.fit(
        X_train2,
        y_train2,
        epochs=epochs,
        batch_size=128,
        # shuffle=True,
        verbose=2,
        validation_data=(X_val2, y_val2))

    # Evaluate the model with the eval dataset.
    # score = model.evaluate(X_test, y_test, steps=10, verbose=0)
    # print('Test loss:', score[0])
    # print('Test accuracy:', score[1])

    # Return the accuracy.
    # print(history.history['val_masked_accuracy'])
    score = ROC_PR.ROC_Score(model, X_val2, y_val2)
    score_test = ROC_PR.ROC_Score(model, X_test2, y_test2)
    score_for_each_drug = ROC_PR.ROC(model, X_test2, y_test2,
                                     ("LRCN" + "BO_delete"), True)
    spec_recall, prec_recall = ROC_PR.PR(model, X_test2, y_test2)

    print('area under ROC curve for val:', score)
    print('area under ROC curve for test:', score_test)
    print(score_for_each_drug)
    print("recall at 95 spec: ", spec_recall)
    print("precision recall: ", prec_recall)

    global scores
    global fold_num
    global comp
    if len(scores) == 0:
        # string_random = get_random_string(17)
        # print(string_random)
        print(scores)
        print(score)
        model.save('LRCN' + str(comp) + '_' + str(fold_num) + '.h5')
        scores.append(score)
    else:
        br = 0
        for iter in range(0, len(scores)):
            if scores[iter] > score:
                print(scores)
                print(score)
                br = 1
                break
        if br == 0:
            print(br)
            print(scores)
            print(score)
            model.save('LRCN' + str(comp) + '_' + str(fold_num) + '.h5')
        scores.append(score)

    # from lime import lime_tabular
    # ins = lime_tabular.LimeTabularExplainer
    # explainer = lime_tabular.LimeTabularExplainer.explain_instance(self=ins ,data_row=X_train, predict_fn=model, num_samples=6354)
    # explainer = lime_tabular.LimeTabularExplainer.explain_instance
    # import lime
    # import lime.lime_tabular
    # import pandas as pd

    # explainer = lime.lime_tabular.LimeTabularExplainer(X_train)
    # print(len(X_train))
    # exp = explainer.explain_instance(len(X_train), model.predict, num_features=len(X_train[0]))
    #
    # exp.show_in_notebook(show_table=True)
    #
    # exp.as_list()

    # shap.initjs()
    #
    # explainer = shap.DeepExplainer(model, X_train2[:100])
    # shap_values = explainer.shap_values(X_test2[:10])
    # shap.summary_plot(shap_values, X_test2, plot_type='bar')

    # worked

    # TODO this block worked
    # def score(X_test, y_test):
    #     return ROC_PR.ROC_Score(model, X_test, y_test)
    #
    # from eli5.permutation_importance import get_score_importances
    #
    # feature_score = []
    #
    # for i in range(0, len(X_test2[0])):
    #     lst = []
    #     lst.append(i)
    #     base_score, score_decreases = get_score_importances(score, X_test2, y_test2, n_iter=1, columns_to_shuffle=lst)
    #     feature_importances = np.mean(score_decreases, axis=0)
    #     feature_score.append(feature_importances[0])
    #     print(feature_score)
    #
    # print(feature_score)

    # model.save('model_save.h5')
    #
    # import deeplift
    # from deeplift.conversion import kerasapi_conversion as kc
    #
    # import keras
    # # print(keras.__version__)
    # # deeplift_model = kc.convert_sequential_model(model)
    # deeplift_model = \
    #     kc.convert_model_from_saved_files(
    #         'model_save.h5',
    #         nonlinear_mxts_mode=deeplift.layers.NonlinearMxtsMode.DeepLIFT_GenomicsDefault)
    #
    # find_scores_layer_idx = 0
    #
    # deeplift_contribs_func = deeplift_model.get_target_contribs_func(
    #     find_scores_layer_idx=find_scores_layer_idx,
    #     target_layer_idx=-1)
    #
    # scores = np.array(deeplift_contribs_func(task_idx=0,
    #                                          input_data_list=[X],
    #                                          batch_size=10,
    #                                          progress_update=1000))

    # print(scores)
    return score
Exemplo n.º 29
0
def decrease_score(model, score, X_test, y_test):
    X_test2 = np.array(X_test).astype(np.float)
    y_test2 = np.array(y_test).astype(np.float)
    new_score = ROC_PR.ROC_Score(model, X_test2, y_test2)
    return score - new_score
Exemplo n.º 30
0
 def score(X_test, y_test):
     return ROC_PR.ROC_Score(model, X_test, y_test)