Exemplo n.º 1
0
def plan_commands(state,
                  viewer=False,
                  teleport=False,
                  profile=False,
                  verbose=True):
    # TODO: could make indices into set of bodies to ensure the same...
    # TODO: populate the bodies here from state and not the real world
    sim_world = connect(use_gui=viewer)
    #clone_world(client=sim_world)
    task = state.task
    robot_conf = get_configuration(task.robot)
    robot_pose = get_pose(task.robot)
    with ClientSaver(sim_world):
        with HideOutput():
            robot = create_pr2(use_drake=USE_DRAKE_PR2)
        set_pose(robot, robot_pose)
        set_configuration(robot, robot_conf)
    mapping = clone_world(client=sim_world, exclude=[task.robot])
    assert all(i1 == i2 for i1, i2 in mapping.items())
    set_client(sim_world)
    saved_world = WorldSaver()  # StateSaver()

    pddlstream_problem = pddlstream_from_state(state, teleport=teleport)
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', sorted(init, key=lambda f: f[0]))
    if verbose:
        print('Goal:', goal)
        print('Streams:', stream_map.keys())

    stream_info = {
        'test-vis-base': StreamInfo(eager=True, p_success=0),
        'test-reg-base': StreamInfo(eager=True, p_success=0),
    }
    hierarchy = [
        ABSTRIPSLayer(pos_pre=['AtBConf']),
    ]

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             stream_info=stream_info,
                             hierarchy=hierarchy,
                             debug=False,
                             success_cost=MAX_COST,
                             verbose=verbose)
    plan, cost, evaluations = solution
    if MAX_COST <= cost:
        plan = None
    print_solution(solution)
    print('Finite cost:', cost < MAX_COST)
    commands = post_process(state, plan)
    pr.disable()
    if profile:
        pstats.Stats(pr).sort_stats('cumtime').print_stats(10)
    saved_world.restore()
    disconnect()
    return commands
Exemplo n.º 2
0
def main(time_step=0.01):
    parser = create_parser()
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    # TODO: argument for selecting prior
    args = parser.parse_args()
    print('Arguments:', args)

    # TODO: nonuniform distribution to bias towards other actions
    # TODO: closed world and open world
    real_world = connect(use_gui=not args.viewer)
    add_data_path()
    task, state = get_problem1(localized='rooms',
                               p_other=0.25)  # surfaces | rooms
    for body in task.get_bodies():
        add_body_name(body)

    robot = task.robot
    #dump_body(robot)
    assert (USE_DRAKE_PR2 == is_drake_pr2(robot))
    attach_viewcone(robot)  # Doesn't work for the normal pr2?
    draw_base_limits(get_base_limits(robot), color=(0, 1, 0))
    #wait_for_user()
    # TODO: partially observable values
    # TODO: base movements preventing pick without look

    # TODO: do everything in local coordinate frame
    # TODO: automatically determine an action/command cannot be applied
    # TODO: convert numpy arrays into what they are close to
    # TODO: compute whether a plan will still achieve a goal and do that
    # TODO: update the initial state directly and then just redraw it to ensure uniqueness
    step = 0
    while True:
        step += 1
        print('\n' + 50 * '-')
        print(step, state)
        wait_for_user()
        #print({b: p.value for b, p in state.poses.items()})
        with ClientSaver():
            commands = plan_commands(state, args)
        print()
        if commands is None:
            print('Failure!')
            break
        if not commands:
            print('Success!')
            break
        apply_commands(state, commands, time_step=time_step)

    print(state)
    wait_for_user()
    disconnect()
Exemplo n.º 3
0
def plan_commands(state, teleport=False, profile=False, verbose=True):
    # TODO: could make indices into set of bodies to ensure the same...
    # TODO: populate the bodies here from state
    task = state.task
    robot_conf = get_configuration(task.robot)
    robot_pose = get_pose(task.robot)
    sim_world = connect(use_gui=False)
    with ClientSaver(sim_world):
        with HideOutput():
            robot = create_pr2(use_drake=USE_DRAKE_PR2)
            #robot = load_model(DRAKE_PR2_URDF, fixed_base=True)
        set_pose(robot, robot_pose)
        set_configuration(robot, robot_conf)
    clone_world(client=sim_world, exclude=[task.robot])
    set_client(sim_world)
    saved_world = WorldSaver()  # StateSaver()

    pddlstream_problem = pddlstream_from_state(state, teleport=teleport)
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', sorted(init, key=lambda f: f[0]))
    if verbose:
        print('Goal:', goal)
        print('Streams:', stream_map.keys())

    stream_info = {
        'test-vis-base': StreamInfo(eager=True, p_success=0),
        'test-reg-base': StreamInfo(eager=True, p_success=0),
    }

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             stream_info=stream_info,
                             max_cost=MAX_COST,
                             verbose=verbose)
    pr.disable()
    plan, cost, evaluations = solution
    if MAX_COST <= cost:
        plan = None
    print_solution(solution)
    print('Finite cost:', cost < MAX_COST)
    print('Real cost:', float(cost) / SCALE_COST)
    if profile:
        pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    saved_world.restore()
    commands = post_process(state, plan)
    disconnect()
    return commands
Exemplo n.º 4
0
def main(time_step=0.01):
    # TODO: closed world and open world
    real_world = connect(use_gui=True)
    add_data_path()
    task, state = get_problem1(localized='rooms',
                               p_other=0.5)  # surfaces | rooms
    for body in task.get_bodies():
        add_body_name(body)

    robot = task.robot
    #dump_body(robot)
    assert (USE_DRAKE_PR2 == is_drake_pr2(robot))
    attach_viewcone(robot)  # Doesn't work for the normal pr2?
    draw_base_limits(get_base_limits(robot), color=(0, 1, 0))
    #wait_for_interrupt()
    # TODO: partially observable values
    # TODO: base movements preventing pick without look

    # TODO: do everything in local coordinate frame
    # TODO: automatically determine an action/command cannot be applied
    # TODO: convert numpy arrays into what they are close to
    # TODO: compute whether a plan will still achieve a goal and do that
    # TODO: update the initial state directly and then just redraw it to ensure uniqueness
    step = 0
    while True:
        step += 1
        print('\n' + 50 * '-')
        print(step, state)
        #print({b: p.value for b, p in state.poses.items()})
        with ClientSaver():
            commands = plan_commands(state)
        print()
        if commands is None:
            print('Failure!')
            break
        if not commands:
            print('Success!')
            break
        apply_commands(state, commands, time_step=time_step)

    print(state)
    wait_for_interrupt()
    disconnect()