Exemplo n.º 1
0
#FLUX reference
Fabs_REF2 = 2.7e-12  #absolute flux (i.e. flux@10pc) erg/s/cm2/um Burgasser+ 1303.7283 @2.29um
fac0 = RJ**2 / ((10.0 * pc)**2)  #nomralize by RJ
Fref = (2.29**2) * Fabs_REF2 / fac0 / 1.e4  #erg/cm2/s/cm-1 @ 2.3um

#loading spectrum
dat = pd.read_csv("../data/luhman16a_spectra_detector1.csv", delimiter=",")
wavd = (dat["wavelength_micron"].values) * 1.e4  #AA
nusd = 1.e8 / wavd[::-1]
fobs = (dat["normalized_flux"].values)[::-1]
err = (dat["err_normalized_flux"].values)[::-1]

#ATMOSPHERE
NP = 100
Parr, dParr, k = rt.pressure_layer(NP=NP)
mmw = 2.33  #mean molecular weight
R = 100000.
beta = c / (2.0 * np.sqrt(2.0 * np.log(2.0)) * R)  #IP sigma need check
ONEARR = np.ones_like(Parr)  #ones_array for MMR
molmassCO = molinfo.molmass("CO")  #molecular mass (CO)
molmassH2O = molinfo.molmass("H2O")  #molecular mass (H2O)

#LOADING CIA
mmrH2 = 0.74
mmrHe = 0.25
molmassH2 = molinfo.molmass("H2")
molmassHe = molinfo.molmass("He")
vmrH2 = (mmrH2 * mmw / molmassH2)
vmrHe = (mmrHe * mmw / molmassHe)
Exemplo n.º 2
0
                   delimiter='\s')
wavmic = dats['wav'].values * 1.e4
ccgs = 29979245800.0
flux = dats['flux'].values * ccgs
# print(wavmic)
# plt.plot(wavmic,flux)
# plt.show()
#import sys
# sys.exit()

dat = pd.read_csv('data/profile.dat')

Parr = dat['P'].values
NP = len(Parr)
Parrx, dParr, k = rt.pressure_layer(NP=NP,
                                    logPtop=np.log10(Parr[0]),
                                    logPbtm=np.log10(Parr[-1]))
Tarr = dat['T'].values
MMR = dat['C1H4'].values

#Parr, dParr, k=rt.pressure_layer(NP=NP)
#Tarr = T0*(Parr)**0.1
nus, wav, R = nugrid(15900, 16300, 30000, unit='AA', xsmode='modit')
print('R=', R)
mdbCH4 = moldb.MdbExomol('.database/CH4/12C-1H4/YT10to10/', nus, crit=1.e-36)
cdbH2H2 = contdb.CdbCIA('.database/H2-H2_2011.cia', nus)
print('N=', len(mdbCH4.A))
molmassCH4 = molinfo.molmass('CH4')
qt = vmap(mdbCH4.qr_interp)(Tarr)
gammaLMP = jit(vmap(gamma_exomol,
                    (0, 0, None, None)))(Parr, Tarr, mdbCH4.n_Texp,
Exemplo n.º 3
0
def test_VALD_MODIT():

    #wavelength range
    wls, wll = 10395, 10405

    #Set a model atmospheric layers, wavenumber range for the model, an instrument
    NP = 100
    Parr, dParr, k = pressure_layer(NP=NP)
    Pref = 1.0  #bar
    ONEARR = np.ones_like(Parr)

    Nx = 2000
    nus, wav, res = nugrid(wls - 5.0, wll + 5.0, Nx, unit="AA", xsmode="modit")

    Rinst = 100000.  #instrumental spectral resolution
    beta_inst = R2STD(
        Rinst)  #equivalent to beta=c/(2.0*np.sqrt(2.0*np.log(2.0))*R)

    #atoms and ions from VALD
    adbV = moldb.AdbVald(
        path_ValdLineList, nus, crit=1e-100
    )  #The crit is defined just in case some weak lines may cause an error that results in a gamma of 0... (220219)
    asdb = moldb.AdbSepVald(adbV)

    #molecules from exomol
    mdbH2O = moldb.MdbExomol('.database/H2O/1H2-16O/POKAZATEL',
                             nus,
                             crit=1e-50)  #,crit = 1e-40)
    mdbTiO = moldb.MdbExomol('.database/TiO/48Ti-16O/Toto', nus,
                             crit=1e-50)  #,crit = 1e-50)
    mdbOH = moldb.MdbExomol('.database/OH/16O-1H/MoLLIST', nus)
    mdbFeH = moldb.MdbExomol('.database/FeH/56Fe-1H/MoLLIST', nus)

    #CIA
    cdbH2H2 = contdb.CdbCIA('.database/H2-H2_2011.cia', nus)

    #molecular mass
    molmassH2O = molinfo.molmass("H2O")
    molmassTiO = molinfo.molmass("TiO")
    molmassOH = molinfo.molmass("OH")
    molmassFeH = molinfo.molmass("FeH")
    molmassH = molinfo.molmass("H")
    molmassH2 = molinfo.molmass("H2")

    #Initialization of MODIT (for separate VALD species, and exomol molecules(e.g., FeH))
    cnuS, indexnuS, R, pmarray = initspec.init_modit_vald(
        asdb.nu_lines, nus, asdb.N_usp)
    cnu_FeH, indexnu_FeH, R, pmarray = initspec.init_modit(
        mdbFeH.nu_lines, nus)
    cnu_H2O, indexnu_H2O, R, pmarray = initspec.init_modit(
        mdbH2O.nu_lines, nus)
    cnu_OH, indexnu_OH, R, pmarray = initspec.init_modit(mdbOH.nu_lines, nus)
    cnu_TiO, indexnu_TiO, R, pmarray = initspec.init_modit(
        mdbTiO.nu_lines, nus)

    #sampling the max/min of temperature profiles
    fT = lambda T0, alpha: T0[:, None] * (Parr[None, :] / Pref)**alpha[:, None]
    T0_test = np.array([1500.0, 4000.0, 1500.0, 4000.0])
    alpha_test = np.array([0.2, 0.2, 0.05, 0.05])
    res = 0.2

    #Assume typical atmosphere
    H_He_HH_VMR_ref = [0.1, 0.15, 0.75]
    PH_ref = Parr * H_He_HH_VMR_ref[0]
    PHe_ref = Parr * H_He_HH_VMR_ref[1]
    PHH_ref = Parr * H_He_HH_VMR_ref[2]

    #Precomputing dgm_ngammaL
    dgm_ngammaL_VALD = setdgm_vald_all(asdb, PH_ref, PHe_ref, PHH_ref, R, fT,
                                       res, T0_test, alpha_test)
    dgm_ngammaL_FeH = setdgm_exomol(mdbFeH, fT, Parr, R, molmassFeH, res,
                                    T0_test, alpha_test)
    dgm_ngammaL_H2O = setdgm_exomol(mdbH2O, fT, Parr, R, molmassH2O, res,
                                    T0_test, alpha_test)
    dgm_ngammaL_OH = setdgm_exomol(mdbOH, fT, Parr, R, molmassOH, res, T0_test,
                                   alpha_test)
    dgm_ngammaL_TiO = setdgm_exomol(mdbTiO, fT, Parr, R, molmassTiO, res,
                                    T0_test, alpha_test)

    T0 = 3000.
    alpha = 0.07
    Mp = 0.155 * 1.99e33 / 1.90e30
    Rp = 0.186 * 6.96e10 / 6.99e9
    u1 = 0.0
    u2 = 0.0
    RV = 0.00
    vsini = 2.0

    mmw = 2.33 * ONEARR  #mean molecular weight
    log_e_H = -4.2
    VMR_H = 0.09
    VMR_H2 = 0.77
    VMR_FeH = 10**-8
    VMR_H2O = 10**-4
    VMR_OH = 10**-4
    VMR_TiO = 10**-8
    A_Fe = 1.5
    A_Ti = 1.2

    adjust_continuum = 0.99

    ga = 2478.57730044555 * Mp / Rp**2
    Tarr = T0 * (Parr / Pref)**alpha
    PH = Parr * VMR_H
    PHe = Parr * (1 - VMR_H - VMR_H2)
    PHH = Parr * VMR_H2
    VMR_e = VMR_H * 10**log_e_H

    #VMR of atoms and ions (+Abundance modification)
    mods_ID = jnp.array([[26, 1], [22, 1]])
    mods = jnp.array([A_Fe, A_Ti])
    VMR_uspecies = atomll.get_VMR_uspecies(asdb.uspecies, mods_ID, mods)
    VMR_uspecies = VMR_uspecies[:, None] * ONEARR

    #Compute delta tau

    #Atom & ions (VALD)
    SijMS, ngammaLMS, nsigmaDlS = vald_all(asdb, Tarr, PH, PHe, PHH, R)
    xsmS = xsmatrix_vald(cnuS, indexnuS, R, pmarray, nsigmaDlS, ngammaLMS,
                         SijMS, nus, dgm_ngammaL_VALD)
    dtauatom = dtauVALD(dParr, xsmS, VMR_uspecies, mmw, ga)

    #FeH
    SijM_FeH, ngammaLM_FeH, nsigmaDl_FeH = exomol(mdbFeH, Tarr, Parr, R,
                                                  molmassFeH)
    xsm_FeH = xsmatrix(cnu_FeH, indexnu_FeH, R, pmarray, nsigmaDl_FeH,
                       ngammaLM_FeH, SijM_FeH, nus, dgm_ngammaL_FeH)
    dtaum_FeH = dtauM_mmwl(dParr, jnp.abs(xsm_FeH), VMR_FeH * ONEARR, mmw, ga)

    #H2O
    SijM_H2O, ngammaLM_H2O, nsigmaDl_H2O = exomol(mdbH2O, Tarr, Parr, R,
                                                  molmassH2O)
    xsm_H2O = xsmatrix(cnu_H2O, indexnu_H2O, R, pmarray, nsigmaDl_H2O,
                       ngammaLM_H2O, SijM_H2O, nus, dgm_ngammaL_H2O)
    dtaum_H2O = dtauM_mmwl(dParr, jnp.abs(xsm_H2O), VMR_H2O * ONEARR, mmw, ga)

    #OH
    SijM_OH, ngammaLM_OH, nsigmaDl_OH = exomol(mdbOH, Tarr, Parr, R, molmassOH)
    xsm_OH = xsmatrix(cnu_OH, indexnu_OH, R, pmarray, nsigmaDl_OH, ngammaLM_OH,
                      SijM_OH, nus, dgm_ngammaL_OH)
    dtaum_OH = dtauM_mmwl(dParr, jnp.abs(xsm_OH), VMR_OH * ONEARR, mmw, ga)

    #TiO
    SijM_TiO, ngammaLM_TiO, nsigmaDl_TiO = exomol(mdbTiO, Tarr, Parr, R,
                                                  molmassTiO)
    xsm_TiO = xsmatrix(cnu_TiO, indexnu_TiO, R, pmarray, nsigmaDl_TiO,
                       ngammaLM_TiO, SijM_TiO, nus, dgm_ngammaL_TiO)
    dtaum_TiO = dtauM_mmwl(dParr, jnp.abs(xsm_TiO), VMR_TiO * ONEARR, mmw, ga)

    #Hminus
    dtau_Hm = dtauHminus_mmwl(nus, Tarr, Parr, dParr, VMR_e * ONEARR,
                              VMR_H * ONEARR, mmw, ga)

    #CIA
    dtauc_H2H2 = dtauCIA_mmwl(nus, Tarr, Parr, dParr, VMR_H2 * ONEARR,
                              VMR_H2 * ONEARR, mmw, ga, cdbH2H2.nucia,
                              cdbH2H2.tcia, cdbH2H2.logac)

    #Summations
    dtau = dtauatom + dtaum_FeH + dtaum_H2O + dtaum_OH + dtaum_TiO + dtau_Hm + dtauc_H2H2

    sourcef = planck.piBarr(Tarr, nus)
    F0 = rtrun(dtau, sourcef)
    Frot = response.rigidrot(nus, F0, vsini, u1, u2)
    wavd = jnp.linspace(wls, wll, 500)
    nusd = jnp.array(1.e8 / wavd[::-1])
    mu = response.ipgauss_sampling(nusd, nus, Frot, beta_inst, RV)
    mu = mu / jnp.nanmax(mu) * adjust_continuum

    assert (np.all(~np.isnan(mu)) * \
            np.all(mu != 0) * \
            np.all(abs(mu) != np.inf))
Exemplo n.º 4
0
# FLUX reference
Fabs_REF2 = 2.7e-12  #absolute flux (i.e. flux@10pc) erg/s/cm2/um Burgasser+ 1303.7283 @2.29um
fac0 = RJ**2 / ((10.0 * pc)**2)  #nomralize by RJ
Fref = (2.29**2) * Fabs_REF2 / fac0 / 1.e4  #erg/cm2/s/cm-1 @ 2.3um

# Loading spectrum
dat = pd.read_csv("../data/luhman16a_spectra_detector1.csv", delimiter=",")
wavd = (dat["wavelength_micron"].values) * 1.e4  #AA
nusd = 1.e8 / wavd[::-1]
fobs = (dat["normalized_flux"].values)[::-1]
err = (dat["err_normalized_flux"].values)[::-1]

# ATMOSPHERIC LAYER
Pref = 1.0  # Reference pressure for a T-P model (bar)
NP = 100
Parr, dParr, k = pressure_layer(NP=NP)
mmw = 2.33  # Mean molecular weight
ONEARR = np.ones_like(Parr)  # ones_array for MMR
molmassCO = molinfo.molmass("CO")  # molecular mass (CO)
molmassH2O = molinfo.molmass("H2O")  # molecular mass (H2O)

# Instrument
beta = R2STD(100000.)  #std of gaussian from R=100000.

# LOADING CIA
mmrH2 = 0.74  # mean molecualr weight of H2 for CIA
mmrHe = 0.25  # mean molecualr weight of He for CIA
molmassH2 = molinfo.molmass("H2")
molmassHe = molinfo.molmass("He")
vmrH2 = (mmrH2 * mmw / molmassH2)
vmrHe = (mmrHe * mmw / molmassHe)