) if "_rand" in file or "retraininit" in file: for i, grapher in enumerate(graphers[:6]): percentage_y = bool((i + 1) % 3) grapher.graph( percentage_x=True, percentage_y=percentage_y, store=False, show_ref=False, show_delta=False, remove_outlier=False, ) if percentage_y: # grapher._figure.gca().set_xlim([50, 99]) grapher._figure.gca().set_ylim([80, 95]) return results, params, labels, graphers # get a logger logger = experiment.Logger() # get the results specified in the file (and hopefully pre-computed) results, params, labels, graphers = get_results(FILE, logger) # %% show the results for grapher in graphers: grapher._figure.show() grapher.store_plot()
PARAM = next(util.file.get_parameters(FILE, 1, 0)) # store mean and std dev for later if "ImageNet" in PARAM["network"]["dataset"]: MEAN_C = [0.485, 0.456, 0.406] STD_C = [0.229, 0.224, 0.225] elif "CIFAR" in PARAM["network"]["dataset"]: MEAN_C = [0.4914, 0.4822, 0.4465] STD_C = [0.2023, 0.1994, 0.2010] else: raise ValueError("Please adapt script to provide normalization of dset!") MEAN_C = np.asarray(MEAN_C)[:, np.newaxis, np.newaxis] STD_C = np.asarray(STD_C)[:, np.newaxis, np.newaxis] # Now initialize the logger LOGGER = experiment.Logger() LOGGER.initialize_from_param(PARAM) # Initialize the evaluator and run it (will return if nothing to compute) COMPRESSOR = experiment.Evaluator(LOGGER) COMPRESSOR.run() # device settings torch.cuda.set_device("cuda:0") DEVICE = torch.device("cuda:0") DEVICE_STORAGE = torch.device("cpu") # Generate all the models we like. # get a list of models MODELS = [COMPRESSOR.get_all(**kw) for kw in MODELS_ALL_DESCRIPTION] IDX_RANGES = []