Exemplo n.º 1
0
def test_bad_heterogeneity():
    main_structure = [
        ('participant',
         Design(ivs={
             'a': [1, 2],
             'b': [1, 2]
         }, ordering=Shuffle(3))),
        ('session',
         Design(ivs={'design': ['practice', 'test']},
                design_matrix=[[0], [1], [1]])),
    ]
    other_structures = {
        'practice': [
            ('block', Design()),
            ('trial', Design(ivs={'difficulty': [1, 2]},
                             ordering=Shuffle(20))),
        ],
        'test': [
            ('block', Design(ordering=CompleteCounterbalance(2))),
            ('trial',
             Design(ivs={'difficulty': [1, 3, 5, 7]}, ordering=Shuffle(5))),
        ],
    }
    with pytest.raises(ValueError):
        DesignTree.new(main_structure, **other_structures)
Exemplo n.º 2
0
def test_bad_heterogeneity():
    main_structure = [
        ("participant", Design(ivs={"a": [1, 2], "b": [1, 2]}, ordering=Shuffle(3))),
        ("session", Design(ivs={"design": ["practice", "test"]}, design_matrix=[[0], [1], [1]])),
    ]
    other_structures = {
        "practice": [("block", Design()), ("trial", Design(ivs={"difficulty": [1, 2]}, ordering=Shuffle(20)))],
        "test": [
            ("block", Design(ordering=CompleteCounterbalance(2))),
            ("trial", Design(ivs={"difficulty": [1, 3, 5, 7]}, ordering=Shuffle(5))),
        ],
    }
    with pytest.raises(ValueError):
        DesignTree.new(main_structure, **other_structures)
Exemplo n.º 3
0
def make_heterogeneous_tree():
    main_structure = [
        ('participant',
         Design(ivs={
             'a': [1, 2],
             'b': [1, 2]
         }, ordering=Shuffle(3))),
        ('session',
         Design(ivs={'design': ['practice', 'test']},
                design_matrix=[[0], [1], [1]])),
    ]
    other_structures = {
        'practice': [
            ('block', Design()),
            ('trial', Design(ivs={'difficulty': [1, 2]},
                             ordering=Shuffle(20))),
        ],
        'test': [
            ('block', Design(ordering=Ordering(2))),
            ('trial',
             Design(ivs={'difficulty': [1, 3, 5, 7]}, ordering=Shuffle(5))),
        ],
    }

    return DesignTree.new(main_structure, **other_structures)
Exemplo n.º 4
0
def make_manual_exp():
    tree = DesignTree.new([('participant', [Design(ordering=Shuffle(2))]),
                           ('block', [Design(ivs={'b': [0, 1, 2]}, ordering=CompleteCounterbalance())]),
                           ('trial', [Design({'a': [False, True]}, ordering=Shuffle(4))]),
                           ])
    exp = Experiment.new(tree)
    exp.add_callback('trial', trial)
    return exp
Exemplo n.º 5
0
def make_heterogeneous_tree():
    main_structure = [
        ("participant", Design(ivs={"a": [1, 2], "b": [1, 2]}, ordering=Shuffle(3))),
        ("session", Design(ivs={"design": ["practice", "test"]}, design_matrix=[[0], [1], [1]])),
    ]
    other_structures = {
        "practice": [("block", Design()), ("trial", Design(ivs={"difficulty": [1, 2]}, ordering=Shuffle(20)))],
        "test": [
            ("block", Design(ordering=Ordering(2))),
            ("trial", Design(ivs={"difficulty": [1, 3, 5, 7]}, ordering=Shuffle(5))),
        ],
    }

    return DesignTree.new(main_structure, **other_structures)
Exemplo n.º 6
0
def make_tree(levels, data):
    designs = [[Design([('a', range(len(levels))), ('b', [False, True])], extra_data=data, ordering=Ordering())]
               for _ in levels]
    return DesignTree.new(list(zip(levels, designs)))
Exemplo n.º 7
0
def test_bizarre_equality():
    design = Design()
    assert (design == 1) is False
    tree = DesignTree.new([("a", design)])
    assert (tree == 1) is False
Exemplo n.º 8
0
def test_design_tree():
    trial_matrix = np.array(
        [
            [-1, -1],
            [1, -1],
            [-1, 1],
            [1, 1],
            [0, 0],
            [0, 0],
            [0, 0],
            [0, 0],
            [-1.41421356, 0.1],
            [1.41421356, 0.1],
            [0, -1.41421356],
            [0, 1.41421356],
            [0, 0],
            [0, 0],
            [0, 0],
            [0, 0],
        ]
    )  # pyDOE.ccdesign(2) with two 0.1 elements to prevent symmetry in the IVs.
    trial_iv_names = ["a", "b"]
    trial_iv_values = [None, None]
    block_ivs = {"block": [1, 2]}
    participant_iv_names = ("A", "B")
    participant_iv_values = [[1, 2], [1, 2, 3]]

    trial_design = Design(ivs=zip(trial_iv_names, trial_iv_values), ordering=Shuffle(3), design_matrix=trial_matrix)
    block_design = Design(block_ivs, ordering=CompleteCounterbalance())
    practice_block_design = Design()
    participant_design = Design(dict(zip(participant_iv_names, participant_iv_values)), ordering=Ordering(10))

    levels_and_designs = OrderedDict(
        [("participant", participant_design), ("block", [practice_block_design, block_design]), ("trial", trial_design)]
    )

    tree = DesignTree.new(levels_and_designs)
    tree.add_base_level()

    levels, designs = zip(*tree.levels_and_designs)

    yield check_identity, designs[1][0], participant_design
    yield check_identity, designs[2][0], practice_block_design
    yield check_identity, designs[2][1], block_design
    yield check_identity, designs[3][0], trial_design

    yield check_equality, len(tree), 4
    yield check_equality, tree[3], ("trial", [trial_design])

    yield check_equality, next(tree).levels_and_designs, next(tree).levels_and_designs, tree.levels_and_designs[1:]
    tree_with_participant_base = next(tree)
    tree_with_block_base = next(tree_with_participant_base)
    yield (
        check_equality,
        tree_with_block_base.levels_and_designs,
        next(next(tree)).levels_and_designs,
        [("block", [practice_block_design, block_design]), ("trial", [trial_design])],
    )
    tree_with_trial_base = next(tree_with_block_base)
    yield (
        check_equality,
        tree_with_trial_base.levels_and_designs,
        [("trial", [trial_design])],
        next(tree_with_block_base).levels_and_designs,
    )
    with pytest.raises(StopIteration):
        next(tree_with_trial_base)

    for design, iv_names, iv_values, n, data, matrix in zip(
        [designs[1][0], designs[2][0], designs[2][1], designs[3][0]],
        [["A", "B", CompleteCounterbalance.iv_name], [], ["block"], ["a", "b"]],
        [[[1, 2], [1, 2, 3], [0, 1]], [], [[1, 2]], [None, None]],
        [10 * 2 * 2 * 3, 1, 2, 3 * len(trial_matrix)],
        [{}, {}, {CompleteCounterbalance.iv_name: 0}, {}],
        [None, None, None, trial_matrix],
    ):
        yield check_design, design, iv_names, iv_values, n, data, matrix

    yield check_design_matrix, designs[3][0].get_order(), ["a", "b"], [None, None], trial_matrix
Exemplo n.º 9
0
def test_bizarre_equality():
    design = Design()
    assert (design == 1) is False
    tree = DesignTree.new([('a', design)])
    assert (tree == 1) is False
Exemplo n.º 10
0
def test_design_tree():
    trial_matrix = np.array(
        [[-1, -1], [1, -1], [-1, 1], [1, 1], [0, 0], [0, 0], [0, 0], [0, 0],
         [-1.41421356, 0.1],
         [1.41421356, 0.1], [0, -1.41421356], [0,
                                               1.41421356],
         [0, 0], [0, 0], [0,
                          0], [0, 0]]
    )  # pyDOE.ccdesign(2) with two 0.1 elements to prevent symmetry in the IVs.
    trial_iv_names = ['a', 'b']
    trial_iv_values = [None, None]
    block_ivs = {'block': [1, 2]}
    participant_iv_names = ('A', 'B')
    participant_iv_values = [[1, 2], [1, 2, 3]]

    trial_design = Design(ivs=zip(trial_iv_names, trial_iv_values),
                          ordering=Shuffle(3),
                          design_matrix=trial_matrix)
    block_design = Design(block_ivs, ordering=CompleteCounterbalance())
    practice_block_design = Design()
    participant_design = Design(dict(
        zip(participant_iv_names, participant_iv_values)),
                                ordering=Ordering(10))

    levels_and_designs = OrderedDict([('participant', participant_design),
                                      ('block',
                                       [practice_block_design, block_design]),
                                      ('trial', trial_design)])

    tree = DesignTree.new(levels_and_designs)
    tree.add_base_level()

    levels, designs = zip(*tree.levels_and_designs)

    yield check_identity, designs[1][0], participant_design
    yield check_identity, designs[2][0], practice_block_design
    yield check_identity, designs[2][1], block_design
    yield check_identity, designs[3][0], trial_design

    yield check_equality, len(tree), 4
    yield check_equality, tree[3], ('trial', [trial_design])

    yield check_equality, next(tree).levels_and_designs, next(
        tree).levels_and_designs, tree.levels_and_designs[1:]
    tree_with_participant_base = next(tree)
    tree_with_block_base = next(tree_with_participant_base)
    yield (check_equality, tree_with_block_base.levels_and_designs,
           next(next(tree)).levels_and_designs,
           [('block', [practice_block_design, block_design]),
            ('trial', [trial_design])])
    tree_with_trial_base = next(tree_with_block_base)
    yield (check_equality, tree_with_trial_base.levels_and_designs, [
        ('trial', [trial_design])
    ], next(tree_with_block_base).levels_and_designs)
    with pytest.raises(StopIteration):
        next(tree_with_trial_base)

    for design, iv_names, iv_values, n, data, matrix in zip(
        [designs[1][0], designs[2][0], designs[2][1], designs[3][0]],
        [['A', 'B', CompleteCounterbalance.iv_name], [], ['block'], ['a', 'b']
         ], [[[1, 2], [1, 2, 3], [0, 1]], [], [[1, 2]], [None, None]],
        [10 * 2 * 2 * 3, 1, 2, 3 * len(trial_matrix)],
        [{}, {}, {
            CompleteCounterbalance.iv_name: 0
        }, {}], [None, None, None, trial_matrix]):
        yield check_design, design, iv_names, iv_values, n, data, matrix

    yield check_design_matrix, designs[3][0].get_order(), ['a', 'b'
                                                           ], [None, None
                                                               ], trial_matrix