Exemplo n.º 1
0
 def _get_results(model):
     exp_dir = os.path.join(args.root, f'{args.dataset}_{model}', 'adv-attack')
     exps = Experiment.gather(exp_dir)
     exps = Experiment.filter(args.filter, exps)
     results = Experiment.collect_all(exps, 'results.csv')
     results['model'] = model
     return results
Exemplo n.º 2
0
def t1(args):
    exps = Experiment.gather(args.run, main='model')
    exps = Experiment.filter(args.filter, exps)

    results = Experiment.collect_all(exps, 'tradeoff.csv')

    unique_cols = results.apply(pd.Series.nunique) == 1
    common_params = results.loc[:, unique_cols].iloc[0]

    r = results.loc[:, ~unique_cols]
    metric_cols = {'t1', 'test_acc', 'test_loss', 'test_nfe'}

    plt.figure(figsize=(10, 6))
    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (1, 0))
    ax3 = plt.subplot2grid((2, 2), (1, 1))

    title = Experiment.abbreviate(common_params, main='model')
    ax1.set_title(title)
    ax1.set_ylabel('Test Accuracy')
    ax2.set_ylabel('Test NFE')
    ax2.set_xlabel('ODE final integration time $t_1$')
    ax3.set_ylabel('Test Accuracy')
    ax3.set_xlabel('Test NFE')

    if set(r.columns) == metric_cols:  # single line plot
        r = r.sort_values('t1')
        ax1.plot(r.t1, r.test_acc, marker='.')
        ax2.plot(r.t1, r.test_nfe, marker='.')

    else:
        # print(r, metric_cols)
        grouping_cols = r.columns.difference(metric_cols).tolist()
        # print(grouping_cols)
        for name, group in r.groupby(grouping_cols):
            # print(grouping_cols)
            # print(group.reset_index())
            params = group.reset_index().loc[0, grouping_cols]
            name = Experiment.abbreviate(params, main='model')
            r = group.sort_values('t1')
            ax1.plot(r.t1, r.test_acc, label=name, marker='.')
            ax2.plot(r.t1, r.test_nfe, label=name, marker='.')
            ax3.plot(r.test_nfe, r.test_acc, label=name, marker='.')

        ax1.legend(bbox_to_anchor=(1, 1), loc="upper left")

    plt.minorticks_on()
    for ax in (ax1, ax2):
        ax.get_xaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
        ax.get_yaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
        ax.grid(b=True, which='minor', linewidth=0.5, linestyle='--')
    plt.savefig(args.output, bbox_inches="tight")
Exemplo n.º 3
0
def success_rate_single(args):
    exps = Experiment.gather(args.run)
    exps = Experiment.filter(args.filter, exps)
    results = Experiment.collect_all(exps, 'results.csv')
    results = results.rename({'distance_x': 'p', 'distance_y': 'distance'}, axis=1)
    results['success_rate'] = np.isfinite(results.distance.values)

    natural_errors = results.distance == 0
    results = results[~natural_errors]  # discard natural errors

    rate = pd.pivot_table(results, values='success_rate', index='tol', columns=['epsilon', 'p'])

    rate = (rate * 100).round(2)
    rate = rate.rename_axis(columns={'p': r'$p$', 'epsilon': r'$\varepsilon$'})
    rate = rate.rename(columns={2.0: r'$L_2$', float('inf'): r'$L_\infty$'}, level=1)

    print(rate)
Exemplo n.º 4
0
def classification_performance(args):
    models = ('resnet', 'mixed', 'fullode')

    exps = Experiment.gather(args.root, main='model')
    exps = Experiment.filter({'dataset': args.dataset}, exps)
    results = Experiment.collect_all(exps, 'nfe.csv.gz')
    results = results[results.t1 == 1]  # keep only complete dynamics
    results['accuracy'] = results.y_pred == results.y_true

    results = results.rename({'tol_x': 'training_tol', 'tol_y': 'tol'}, axis=1)
    rate = pd.pivot_table(results, values='accuracy', index='tol', columns=['model', 'downsample'])
    
    rate = (100 * (1 - rate)).round(2)
    rate = rate.rename(mapper=lambda x: r'$10^{{{}}}$'.format(int(round(np.log10(x)))), level=0)

    with open(args.output, 'w') as out:
        rate.to_latex(out, escape=False, multicolumn_format='c')
        print(rate)
Exemplo n.º 5
0
def diff(args):

    dataset = 'MNIST' if 'mnist' in args.run else 'CIFAR-10'
    exps = Experiment.gather(args.run)
    exps = Experiment.filter(args.filter, exps)
    # exps = Experiment.filter({'distance': float('inf')}, exps)
    exps = list(exps)
    
    def _make_plot(d):
        results = Experiment.collect_all(exps, f'diff_{d}.csv')
        
        # XXX TO FIX IN diff.py
        corrupted = results.loc[:, '0.0':'1.0'].isna().all(axis=1)
        if corrupted.any():
            results.loc[corrupted, '0.0':'1.0'] = results.loc[corrupted, '0.0.1':'1.0.1'].values
            results = results.dropna(axis=1)
        
        results = results.sort_values('tol')
        id_cols = [c for c in results.columns if not c.startswith('0') and not c.startswith('1')]
        results = results.melt(id_vars=id_cols, var_name='t', value_name='diff')
        results['t'] = results.t.astype(np.float32)
        results[r'$\tau$'] = results.tol.astype(np.float32).apply(lambda x: rf'$10^{{{np.log10(x).round()}}}$')# .apply(lambda x: rf'$\mathrm{{{x}}}$')
        if d == 'cos':
            results['diff'] = 1 - results['diff']
        plt.figure(figsize=figsize(1))
        ax = sns.lineplot(x='t', y='diff', hue=r'$\tau$', ci=None, data=results) # ci='sd'
        plt.ylabel(r'$|\mathbf{h}(t) - \mathbf{h}_\text{adv}(t)|_2$')
        plt.xlabel(r'$t$')
        plt.xlim(0, 1)
        sns.despine()
        # plt.legend(fontsize='xx-small', title_fontsize='16')
        
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')

        for axis in [ax.xaxis, ax.yaxis]:
            axis.set_tick_params(direction='out', color=ax.spines['left'].get_ec())
        
        plt.savefig(f'{args.output}_{dataset}.pdf', bbox_inches="tight")
        plt.close()

    _make_plot('l2')
Exemplo n.º 6
0
def train(args):
    exps = Experiment.gather(args.run, main='model')
    exps = Experiment.filter(args.filter, exps)

    plt.figure(figsize=(10, 6))
    ax = plt.gca()
    for exp in exps:
        # if run.params.loc[0, 'lr'] == 0.1: continue
        try:
            exp.log.plot('epoch', 'test_acc', label=exp.path, ax=ax)
            print(exp.path)
        except Exception as e:
            print(exp.path)
            print(e)

    plt.minorticks_on()
    ax.get_xaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax.get_yaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    plt.grid(b=True, which='minor', linewidth=0.5, linestyle='--')
    plt.legend(bbox_to_anchor=(1, 1), loc="upper left")
    plt.savefig(args.output, bbox_inches="tight")
Exemplo n.º 7
0
def transfer(args):
    exps = Experiment.gather(args.run, main='model')
    exps = Experiment.filter(args.filter, exps)

    results_file = 'finetune.csv' if args.data is None else 'finetune-{}.csv'.format(args.data)
    results = Experiment.collect_all(exps, results_file)

    perc_scale = 100 if args.percentage else 1

    # filter out aggregations for now
    results = results[results.t1 >= 0]
    results.cv_accuracy *= perc_scale

    results['name'] = None
    results.loc[(results.downsample == 'residual') & (results.model == 'resnet'), 'name'] = 'Res-Net'
    results.loc[(results.downsample == 'residual') & (results.model == 'odenet'), 'name'] = 'Res-ODE'
    results.loc[(results.downsample == 'one-shot') & (results.model == 'odenet'), 'name'] = 'ODE-Only'
    results['name'] = pd.Categorical(results['name'], ['Res-Net', 'Res-ODE', 'ODE-Only'])
    results = results.sort_values('name')

    ax = sns.lineplot(x='t1', y='cv_accuracy', hue='name', style='name', markers=('D', 'o', 'o'), dashes=False, data=results)
    h, l = ax.get_legend_handles_labels()
    h, l = h[1:], l[1:]

    ax.lines[0].set_linestyle('--')
    h[0].set_linestyle('--')
    ax.lines[0].set_color('k')
    h[0].set_color('k')

    for hi in h:
        hi.set_markeredgecolor('w')

    plt.xlabel('t')
    plt.ylabel('5-fold Accuracy (%)')
    plt.xlim(0, 1)
    # ax.set_ylim(bottom=0)

    plt.legend(handles=h, labels=l, loc='best', ncol=1)  # , prop={'size': 8})
    plt.savefig(args.output, bbox_inches="tight")
Exemplo n.º 8
0
def best(args):
    exps = Experiment.gather(args.run, main='model')
    exps = Experiment.filter(args.filter, exps)

    if args.l:  # search best in logs data
        results = Experiment.collect_all(exps, 'log', index=0)
    else:
        results = Experiment.collect_all(exps, 'results')

    metric_cols = {'epoch', 't1', 'test_acc', 'test_loss', 'test_nfe', 'test_tol', 'acc', 'loss', 'nfe-f', 'nfe-b'}
    grouping_cols = results.columns.difference(metric_cols).tolist()

    idx_acc_max = results.groupby(grouping_cols)['test_acc'].idxmax()
    results = results.loc[idx_acc_max]

    common_params = results.apply(pd.Series.nunique) == 1
    common_values = results.loc[:, common_params].iloc[0]
    results = results.loc[:, ~common_params]

    with pd.option_context('display.width', None), pd.option_context('max_columns', None):
        print(results.sort_values('test_acc', ascending=False).head(args.n))

    print(common_values)
Exemplo n.º 9
0
    def _faiss_gather(s_dir):

        faiss_exps = os.path.join(args.run, s_dir)
        faiss_exps = Experiment.gather(faiss_exps)
        faiss_exps = Experiment.filter(args.filter, faiss_exps)
        faiss_exps = list(faiss_exps)

        db_sizes = [50000, 100000, 250000, 500000, 750000, 950000]
        effec = Experiment.collect_all(faiss_exps, 'metrics*.csv')
        effec = effec.query('limit in @db_sizes')

        times = Experiment.collect_all(faiss_exps, 'query_times.csv')
        times['query_time'] = times.loc[:, 'query_time_run1':
                                        'query_time_run5'].mean(axis=1)

        space = Experiment.collect_all(faiss_exps, 'index_stats.csv')
        # space['size'] *= 64 / 1024
        space['size'] /= 1024**2
        space['build_time'] = space.train_time + space.add_time

        data = effec.merge(times)
        data = data.merge(space)
        data['limit'] = data.limit.apply(lambda x: str(x)[:-3] + 'k')

        data = pd.pivot_table(data,
                              values=[
                                  'ap', 'ndcg', 'ndcg@25', 'query_time',
                                  'size', 'build_time'
                              ],
                              index=['limit', 'n_probes'])
        data = data.reset_index().rename(columns={
            'limit': 'samples',
            'n_probes': 'trade-off'
        })
        print(data)
        return data
Exemplo n.º 10
0
def retrieval(args):
    exps = Experiment.gather(args.run, main='model')
    exps = Experiment.filter(args.filter, exps)

    results_file = 'retrieval.csv' if args.data is None else 'retrieval-{}.csv'.format(args.data)
    results = Experiment.collect_all(exps, results_file)

    perc_scale = 100 if args.percentage else 1

    sym_metric = '{}_sym'.format(args.metric)
    asym_metric = '{}_asym'.format(args.metric)

    assert sym_metric in results.columns, f'Results not available for this run: {sym_metric}'
    assert asym_metric in results.columns, f'Results not available for this run: {asym_metric}'

    results[[sym_metric, asym_metric]] *= perc_scale
    results = results.sort_values('downsample')
    is_baseline = (results.downsample == 'residual') & (results.model == 'resnet')
    baseline = results[is_baseline]
    # baseline = pd.DataFrame()
    results = results[~is_baseline]

    assert results.dataset.nunique() == 1, "This plot should be drawn with only runs on a single dataset: {}".format(results.dataset.unique())

    ci = None

    plt.figure()
    ax = plt.gca()
    eps = 0
    if not baseline.empty:
        eps = .05
        common = dict(xycoords='data', textcoords='offset points', fontsize=8, va='center', ha='center')
        mean_aps = baseline.groupby('t1').mean().sort_values('t1')
        for block, aps in enumerate(mean_aps.to_dict('records')):
            if aps[sym_metric] < .95 * perc_scale:
                ax.plot([0, 1 + eps], [aps[sym_metric]]*2, c='k', lw=.8)
                ax.annotate(f'#{block}', xy=(1 + eps, aps[sym_metric]), xytext=(8, 0), **common)
                
            if aps[asym_metric] < .95 * perc_scale:
                ax.plot([-eps, 1], [aps[asym_metric]]*2, c='k', lw=.8, ls='dashed')
                ax.annotate(f'#{block}', xy=(-eps, aps[asym_metric]), xytext=(-8, 0), **common)

    sns.lineplot(x='t1', y=sym_metric, hue='downsample', style='downsample', ci=ci, markers=('o', 'o'), dashes=False,
                 data=results, ax=ax)
    sns.lineplot(x='t1', y=asym_metric, hue='downsample', style='downsample', ci=ci, markers=('o', 'o'),
                 dashes=((2, 2), (2, 2)), data=results, ax=ax)

    label_map = {'residual': 'ODE-Net', 'one-shot': 'Full-ODE-Net'}

    h, l = ax.get_legend_handles_labels()
    h_and_l = zip(h, l)
    h_and_l = sorted(h_and_l, key=lambda x: x[1], reverse=True)
    h_and_l = (
        (h, '{}, {}'.format(label_map[l], 'asymmetric' if h.is_dashed() else 'symmetric'))
        for h, l in h_and_l if l in label_map)
    h, l = zip(*h_and_l)
    
    if not baseline.empty:
        h += (Line2D([], [], c='k', lw=.8), Line2D([], [], c='k', ls='dashed', lw=.8))
        l += ('ResNet, symmetric', 'ResNet, asymmetric')

    # plt.title(dataset)
    plt.xlabel(r'$\mathrm{\mathit{t}}$ (final hidden state time)')
    plt.ylabel(r'mean Average Precision {}(%)'.format('@ 10 ' if args.metric == 'ap10' else ''))
    plt.xlim(-2*eps, 1 + 2*eps)

    y_lim = (0, perc_scale) if args.data is None else (.24 * perc_scale, .68 * perc_scale)
    plt.ylim(*y_lim)

    major_ticks = np.arange(0, 1.2, 0.2)
    minor_ticks = np.arange(0, 1.05, 0.05)
    ax.set_xticks(major_ticks)
    ax.set_xticks(minor_ticks, minor=True)
    ax.get_yaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax.grid(b=True, which='minor', linewidth=0.5, linestyle='--')

    plt.legend(handles=h, labels=l, loc='lower center', ncol=3, prop={'size': 8})
    plt.savefig(args.output, bbox_inches="tight")
Exemplo n.º 11
0
def tradeoff(args):
    exps = Experiment.gather(args.run, main='model')
    exps = Experiment.filter(args.filter, exps)

    results = Experiment.collect_all(exps, 'nfe.csv.gz')
    results = results.sort_values('downsample')

    assert results.dataset.nunique() == 1, "This plot should be drawn with only runs on a single dataset"

    results['epsilon'] = 1 - results.t1
    results['test error'] = 100 * (results.y_pred != results.y_true)

    plt.figure()
    ax = plt.gca()

    handles = []
    labels = []
    label_map = {'residual': 'ODE-Net', 'one-shot': 'Full-ODE-Net'}

    sns.lineplot(x='epsilon', y='test error', hue='downsample', style='downsample', ci='sd', markers=('o', 'o'),
                 dashes=False, data=results, ax=ax)
    ax.set_ylim([0, 100])
    ax.set_xlabel(r'$\mathrm{\mathit{\varepsilon}}$ (time anticipation)')
    ax.set_ylabel(r'test error %')

    h, l = ax.get_legend_handles_labels()

    for hi, li in zip(h[1:], l[1:]):
        hh = Line2D([], [])
        hh.update_from(hi)
        hh.set_marker(None)
        handles.append(hh)
        labels.append(label_map[li])

    ax.get_legend().remove()

    ax2 = plt.twinx()
    sns.lineplot(x='epsilon', y='nfe', hue='downsample', style='downsample', ci='sd', markers=('X', 'X'), dashes=False,
                 data=results, ax=ax2, legend=False)
    # ax2.set_ylabel(r'number of function evaluations (NFE)')
    ax2.set_ylabel(r'NFE')
    ax2.set_ylim([0, ax2.get_ylim()[1] * .9])

    handles.extend([
        Line2D([], [], marker='o', markerfacecolor='k', markeredgecolor='w', color='k'),
        Line2D([], [], marker='X', markerfacecolor='k', markeredgecolor='w', color='k'),
    ])
    labels.extend(['error', 'nfe'])

    handler_map = {h: HandlerLine2D(marker_pad=0) for h in handles[-2:]}
    plt.legend(handles=handles, labels=labels, loc='upper center', ncol=2, handler_map=handler_map)

    plt.minorticks_on()
    ax.get_xaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax.get_yaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    # ax2.get_xaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax2.set_yticks(np.linspace(ax2.get_yticks()[0], ax2.get_yticks()[-1], len(ax.get_yticks())))

    ax.grid(b=True, which='minor', linewidth=0.5, linestyle='--')
    ax2.grid(False)
    plt.xlim(0, 1)

    plt.savefig(args.output, bbox_inches="tight")
Exemplo n.º 12
0
def effectiveness_vs_timespace(args):

    db_sizes = [50000, 100000, 250000, 500000, 750000, 950000]

    def _faiss_gather(s_dir):

        faiss_exps = os.path.join(args.run, s_dir)
        faiss_exps = Experiment.gather(faiss_exps)
        faiss_exps = Experiment.filter(args.filter, faiss_exps)
        faiss_exps = list(faiss_exps)

        db_sizes = [50000, 100000, 250000, 500000, 750000, 950000]
        effec = Experiment.collect_all(faiss_exps, 'metrics*.csv')
        effec = effec.query('limit in @db_sizes')

        times = Experiment.collect_all(faiss_exps, 'query_times.csv')
        times['query_time'] = times.loc[:, 'query_time_run1':
                                        'query_time_run5'].mean(axis=1)

        space = Experiment.collect_all(faiss_exps, 'index_stats.csv')
        # space['size'] *= 64 / 1024
        space['size'] /= 1024**2
        space['build_time'] = space.train_time + space.add_time

        data = effec.merge(times)
        data = data.merge(space)
        data['limit'] = data.limit.apply(lambda x: str(x)[:-3] + 'k')

        data = pd.pivot_table(data,
                              values=[
                                  'ap', 'ndcg', 'ndcg@25', 'query_time',
                                  'size', 'build_time'
                              ],
                              index=['limit', 'n_probes'])
        data = data.reset_index().rename(columns={
            'limit': 'samples',
            'n_probes': 'trade-off'
        })
        print(data)
        return data

    # FAISS
    fhdata = _faiss_gather('ivfpq_H+M100k')
    fhdata['method'] = 'IVFPQ'
    # FAISS (T4SA)
    ftdata = _faiss_gather('ivfpq_bt4sa')
    ftdata['method'] = 'IVFPQ*'

    # THR SQ LUCENE
    thr_exps = os.path.join(args.run, 'lucene-thr-sq')
    thr_exps = Experiment.gather(thr_exps)
    thr_exps = Experiment.filter(args.filter, thr_exps)
    thr_exps = list(thr_exps)

    effec = Experiment.collect_all(thr_exps, 'metrics.csv')
    effec = effec.query('limit in @db_sizes')

    space = Experiment.collect_all(thr_exps, 'index_stats.csv')
    space['size'] /= 10**6
    data = effec.merge(space)
    data['limit'] = data.limit.apply(lambda x: str(x)[:-3] + 'k')
    data['build_time'] = data.add_time

    data = pd.pivot_table(
        data,
        values=['ap', 'ndcg', 'ndcg@25', 'query_time', 'size', 'build_time'],
        index=['limit', 'threshold'])
    sqdata = data.reset_index().rename(columns={
        'limit': 'samples',
        'threshold': 'trade-off'
    })
    print(sqdata)
    sqdata['method'] = 'Thr-SQ'

    style_order = [str(x)[:-3] + 'k' for x in db_sizes]

    data = pd.concat((sqdata, ftdata, fhdata))

    for metric in args.metrics:
        # EvT PLOT
        plt.figure()
        ax = sns.lineplot(x='query_time',
                          y=metric,
                          hue='method',
                          style='samples',
                          markers=True,
                          style_order=style_order,
                          data=data)
        '''
        ax = plt.gca()
        common = dict(x='query_time', y=metric, style='samples', markers=True, style_order=style_order, ax=ax)
        sns.lineplot(data=sqdata, **common)  # size='threshold'
        sns.lineplot(data=ftdata, **common)  # size='n_probes'
        sns.lineplot(data=fhdata, **common)  # size='n_probes'
        '''
        ax.set(xscale='log')
        # plt.legend(title='DB size $N$')
        plt.xlabel('Query Time (s)')
        plt.ylabel('mAP' if metric == 'ap' else metric.upper())
        out = f'evt_{metric}.pdf'
        plt.savefig(out)
        os.system(f'croppdf {out}')
        plt.close()

        # EvS PLOT
        plt.figure()
        ax = sns.lineplot(x='size',
                          y=metric,
                          hue='method',
                          style='samples',
                          markers=True,
                          style_order=style_order,
                          estimator=None,
                          data=data)
        '''
        ax = plt.gca()
        common = dict(x='size', y=metric, style='samples', markers=True, style_order=style_order, ax=ax, estimator=None)
        sns.lineplot(data=sqdata, **common)  # size='threshold'
        sns.lineplot(data=ftdata, **common)  # size='n_probes'
        sns.lineplot(data=fhdata, **common)  # size='n_probes'
        '''
        ax.set(xscale='log')
        plt.xlabel('Index Size (MB)')
        plt.ylabel('mAP' if metric == 'ap' else metric.upper())
        out = f'evs_{metric}.pdf'
        plt.savefig(out)
        os.system(f'croppdf {out}')
        plt.close()

        # EvB PLOT
        plt.figure()
        ax = sns.lineplot(x='build_time',
                          y=metric,
                          hue='method',
                          style='samples',
                          markers=True,
                          style_order=style_order,
                          estimator=None,
                          data=data)
        '''
        ax = plt.gca()
        common = dict(x='size', y=metric, style='samples', markers=True, style_order=style_order, ax=ax, estimator=None)
        sns.lineplot(data=sqdata, **common)  # size='threshold'
        sns.lineplot(data=ftdata, **common)  # size='n_probes'
        sns.lineplot(data=fhdata, **common)  # size='n_probes'
        '''
        # ax.set(xscale='log')
        plt.xlabel('Indexing Time (s)')
        plt.ylabel('mAP' if metric == 'ap' else metric.upper())
        out = f'evb_{metric}.pdf'
        plt.savefig(out)
        os.system(f'croppdf {out}')
        plt.close()