Exemplo n.º 1
0
def __main__():
    import customsim
    import modeldata

    MCs = 1
    GCsPerMC = 1

    networkTemplate = FileTemplate("../NeuroML2/Networks/NetworkTemplate.xml")
    includeTemplate = FileTemplate("../NeuroML2/Networks/IncludeTemplate.xml")
    populationTemplate = FileTemplate("../NeuroML2/Networks/PopulationTemplate.xml")
    projectionTemplate = FileTemplate("../NeuroML2/Networks/ProjectionTemplate.xml")

    customsim.setup(MCs, GCsPerMC)
    model = modeldata.getmodel()

    netFile = "../NeuroML2/Networks/Bulb_%iMC_%iGC.net.nml" % (len(model.mitral_gids), len(model.granule_gids))

    includes = ""
    populations = ""
    projections = ""

    mcNMLs = {}
    gcNMLs = {}

#import pydevd
#pydevd.settrace('10.211.55.3', port=4200, stdoutToServer=True, stderrToServer=True)

    # Make MC includes and populations
    for mcgid in model.mitral_gids:

        includes += includeTemplate.text\
            .replace("[CellType]", "Mitral")\
            .replace("[GID]", `mcgid`)

        populations += populationTemplate.text\
            .replace("[CellType]", "Mitral")\
            .replace("[GID]", `mcgid`)\
            .replace("[X]", `model.mitrals[mcgid].x`)\
            .replace("[Y]", `model.mitrals[mcgid].y`)\
            .replace("[Z]", `model.mitrals[mcgid].z`)

        # Retain mitral cell NML
        mcNML = pynml\
                .read_neuroml2_file("../NeuroML2/MitralCells/Exported/Mitral_0_%i.cell.nml" % mcgid)\
                .cells[0]
        
        mcNMLs.update({mcgid:mcNML})

    # Make GC includes and populations
    import granules
    from neuroml.nml.nml import NeuroMLDocument

    for gcgid in model.granule_gids:

        includes += includeTemplate.text\
            .replace("[CellType]", "Granule")\
            .replace("[GID]", `gcgid`)

        populations += populationTemplate.text\
            .replace("[CellType]", "Granule")\
            .replace("[GID]", `gcgid`)\
            .replace("[X]", `granules.gid2pos[gcgid][0]`)\
            .replace("[Y]", `granules.gid2pos[gcgid][1]`)\
            .replace("[Z]", `granules.gid2pos[gcgid][2]`)

        # Retain granule cell NML
        gcNML = pynml\
                .read_neuroml2_file("../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml" % gcgid)\

        gcNMLs.update({gcgid:gcNML})

    # Add a projection for each synapse
    synCount = len(model.mgrss.keys())
    curSyn = 0

    for sgid in model.mgrss.keys():

        print('Building synapse %i of %i' % (curSyn+1,synCount))

        synapse = model.mgrss[sgid]

        nsecden = model.mitrals[synapse.mgid].secden[synapse.isec].nseg
        secdenIndex = min(nsecden-1, int(synapse.xm * nsecden))
        postSegmentId = [seg.id\
                         for seg in mcNMLs[synapse.mgid].morphology.segments\
                         if seg.name == "Seg%i_secden_%i"%(secdenIndex,synapse.isec)\
                        ][0]

        gcNML = gcNMLs[synapse.ggid].cells[0]

        # Position the spine along the GC priden
        import exportHelper
        exportHelper.splitSegmentAlongFraction(gcNML,"Seg0_priden2_0","priden2_0",synapse.xg,'Seg0_neck')
        pynml.write_neuroml2_file(gcNMLs[synapse.ggid], "../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml" % synapse.ggid)

        # Add Dendro-dendritic synapses
        # GC -> MC part
        projections += projectionTemplate.text\
            .replace("[ProjectionID]", `sgid`+'_G2M')\
            .replace("[PreCellType]", "Granule")\
            .replace("[PreGID]", `synapse.ggid`)\
            .replace("[PreSegment]", `4`)\
            .replace("[PreAlong]", `0.5`)\
            .replace("[PostCellType]", "Mitral")\
            .replace("[PostGID]", `synapse.mgid`)\
            .replace("[PostSegment]", `postSegmentId`)\
            .replace("[PostAlong]", "0.5")\
            .replace("[Synapse]", "FIsyn")\

        # MC -> GC part
        projections += projectionTemplate.text\
            .replace("[ProjectionID]", `sgid`+'_M2G')\
            .replace("[PreCellType]", "Mitral")\
            .replace("[PreGID]", `synapse.mgid`)\
            .replace("[PreSegment]", `postSegmentId`)\
            .replace("[PreAlong]", `0.5`)\
            .replace("[PostCellType]", "Granule")\
            .replace("[PostGID]", `synapse.ggid`)\
            .replace("[PostSegment]", `4`)\
            .replace("[PostAlong]", "0.5")\
            .replace("[Synapse]", "AmpaNmdaSyn")\

        curSyn += 1


    network = networkTemplate.text\
        .replace("[IncludesPlaceholder]", includes)\
        .replace("[PopulationsPlaceholder]", populations)\
        .replace("[ProjectionsPlaceholder]", projections)

    with open(netFile, "w") as file:
        file.write(network)

    print('Net file saved to: ' + netFile)
Exemplo n.º 2
0
def exportToNML(cells):

    nml_net_file = "../NeuroML2/GranuleCells/Exported/GCnet%iG.net.nml" % len(cells)
    export_to_neuroml2(None,
                       nml_net_file,
                       includeBiophysicalProperties=False,
                       separateCellFiles=True)

    # Rename files so their cell GIDs are preserved
    for gcid in cells.keys():
        fileId = cells[gcid]['index']
        oldFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml' % fileId
        newFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml_TEMP' % gcid

        # Using TEMP files to avoid naming conflicts
        os.rename(oldFile, newFile)

    # Remove temp files after all have been renamed
    for gcid in cells.keys():
        oldFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml_TEMP' % gcid
        newFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml' % gcid
        os.rename(oldFile, newFile)


    for gcid in cells.keys():

        cell, nml_doc, nml_cell_file = readGCnml(gcid)
        
        print("Loaded GC cell %i with %i segments"%(gcid, len(cell.morphology.segments)))

        # Change cell ID to preserve GCID
        cell.id = "Granule_0_%i" % gcid

        # Change segment ids to start at 0 and increment
        exportHelper.resetRoot(cell)

        # Replace ModelViewParmSubset_N groups with all, axon, soma, dendrite groups
        buildStandardSegmentGroups(cell)

        # Add channel placeholders
        nml_doc.includes.append(neuroml.IncludeType(href="channelIncludesPLACEHOLDER"))
        cell.biophysical_properties = neuroml.BiophysicalProperties(id="biophysPLACEHOLDER")
        cell.morphology.segments.append(neuroml.Segment(id="spinePLACEHOLDER"))

        # Save the new NML
        pynml.write_neuroml2_file(nml_doc, nml_cell_file)


        # Replace placeholders with contents from GranuleCell...xml files
        replaceChannelPlaceholders(nml_cell_file)

        cell, nml_doc, nml_cell_file = readGCnml(gcid)

        # Fix the fractionAlong parent segment bug ( https://github.com/NeuroML/org.neuroml.export/issues/46 )
        exportHelper.splitSegmentAlongFraction(cell, "Seg0_priden", "priden", 0.8, "Seg0_priden2_0")

        # Orient cell along the versor
        versor = granules.granule_position_orientation(gcid)[1]

        for seg in cell.morphology.segments:
            segLength = seg.length

            if seg.parent is not None:
                parentDistal = [parent for parent in cell.morphology.segments if parent.id == seg.parent.segments][0].distal
                seg.proximal.x = parentDistal.x
                seg.proximal.y = parentDistal.y
                seg.proximal.z = parentDistal.z

            seg.distal = setAlongVersor(seg.distal, versor, seg.proximal, segLength)

        # Make sure spine is in the all group
        [group for group in cell.morphology.segment_groups if group.id == 'all'][0]\
            .includes\
            .append(neuroml.Include(segment_groups='spine_group'))\

        # and Dendrite group
        [group for group in cell.morphology.segment_groups if group.id == 'dendrite_group'][0]\
            .includes\
            .append(neuroml.Include(segment_groups='spine_group'))

        # Save orientation
        pynml.write_neuroml2_file(nml_doc, nml_cell_file)

        print(nml_cell_file)