def get_features(filename, features=features): d = Dataset(filename) ev = Evaluator() ncols = len(features) nrows = len(d['t']) result = np.zeros( [nrows, ncols] ) for (idx, f) in enumerate(features): print "Retrieving feature ", f vec = ev.eval_expr(f, env = d) if np.any(np.isnan(vec)): print "Warning: NaN in", f elif np.any(np.isinf(vec)): print "Warning: inf in", f result[:, idx] = vec return result, d
def dataset_to_feature_matrix(d, features, start_idx=None, end_idx=None): ev = Evaluator() ncols = len(features) t = d['t'][start_idx:end_idx] nrows = len(t) print "feature matrix shape:", [nrows, ncols] result = np.zeros( [nrows, ncols] ) for (idx, f) in enumerate(features): print "Retrieving feature ", f vec = ev.eval_expr(f, env = d, start_idx=start_idx, end_idx=end_idx) if np.any(np.isnan(vec)): print "Warning: NaN in", f elif np.any(np.isinf(vec)): print "Warning: inf in", f result[:, idx] = vec return result