Exemplo n.º 1
0
    def test_sub_test_2(self):
        # Test with two same inputs from one placeholder
        graph = build_graph(nodes, [
            *connect('placeholder_1:0', '0:sub'),
            *connect_data('placeholder_1:0', '1:sub'),
            *connect('sub', 'output'),
        ],
                            nodes_with_edges_only=True)
        Sub().find_and_replace_pattern(graph)

        graph_ref = build_graph(nodes, [
            *connect('placeholder_1:0', '0:add'),
            *connect_data('placeholder_1:0', '0:negate'),
            *connect('minus_one', '1:negate'),
            *connect('negate', '1:add'),
            *connect('add', 'output'),
        ],
                                nodes_with_edges_only=True)

        (flag, resp) = compare_graphs(graph,
                                      graph_ref,
                                      'output',
                                      check_op_attrs=True)
        self.assertTrue(flag, resp)
        self.assertTrue(graph.node[graph.get_nodes_with_attributes(
            type='Add')[0]]['name'] == 'my_sub')
Exemplo n.º 2
0
    def test_sub_test_2(self):
        # test with two same inputs from one placeholder
        graph = build_graph(nodes_attributes,
                            [('placeholder_1', 'Sub'),
                             ('placeholder_1', 'Sub'),
                             ('Sub', 'last')
                             ], nodes_with_edges_only=True)

        graph_ref = build_graph(nodes_attributes,
                                [('neg', 'add_1'),
                                 ('placeholder_1', 'add_1'),
                                 ('placeholder_1', 'neg'),
                                 ('const', 'neg'),
                                 ('add_1', 'last'),
                                 ], nodes_with_edges_only=True)

        graph.stage = 'front'

        tested_class = Sub()
        tested_class.find_and_replace_pattern(graph)

        (flag, resp) = compare_graphs(graph, graph_ref, 'last', check_op_attrs=True)
        self.assertTrue(flag, resp)
    def find_and_replace_pattern(self, graph: Graph):
        fw = graph.graph['fw']
        argv = graph.graph['cmd_params']
        layout = graph.graph['layout']

        for_graph_and_each_sub_graph_recursively(graph, fuse_pad)
        for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

        # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
        for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing))

        # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
        # IE doesn't support batchNormInference with 4 inputs, so we have to split it to two ScaleShift
        for_graph_and_each_sub_graph_recursively(graph, convert_batch_norm)

        if fw == 'caffe':
            # Converting ScaleShift layer to Mul->Add
            for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add)

        for_graph_and_each_sub_graph_recursively(graph, Div().find_and_replace_pattern)
        for_graph_and_each_sub_graph_recursively(graph, Sub().find_and_replace_pattern)
        for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

        if not argv.disable_fusing:
            if fw != 'caffe':
                # Converting ScaleShift layer to Mul->Add
                for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add)
                for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

            # Fusing the sequences of Mul/Add operations
            for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence)
            for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

            normalize_eltwise_inputs(graph)
            for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

            # Fusing linear operation to Convolution
            for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops)
            for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

        if not argv.disable_gfusing:
            for_graph_and_each_sub_graph_recursively(graph, grouped_convolutions_fusing)
            for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())
            if not argv.disable_fusing:
                for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops)
                for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

        for_graph_and_each_sub_graph_recursively(graph, normalize_eltwise_inputs)
        for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

        MarkNodesToFuseUpToFakeQuantize().find_and_replace_pattern(graph)
        FakeQuantizeFuse().find_and_replace_pattern(graph)
        AddFakeQuantizeFuse().find_and_replace_pattern(graph)
        MulFakeQuantizeFuse().find_and_replace_pattern(graph)
        for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

        for_graph_and_each_sub_graph_recursively(graph, fuse_pad)
        for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up())

        if layout != 'NHWC' and not argv.disable_resnet_optimization:
            stride_optimization(graph)