def roots_interval(exp,a,b): roots=[] h=(b-a)/1000 try: while(a<=b): f1=extract.main(exp,[a]) f2=extract.main(exp,[a+h]) if(f1*f2<=0 and (f1*f2)>-10): roots.append(a+h/2) else: if(math.fabs(f1)<0.01): roots.append(a) a=a+h actual=[] if(len(roots)!=0): actual.append(roots[0]) i=1 count=0 while(i<len(roots)): if(math.fabs(roots[i]-roots[i-1])>0.1): actual.append(roots[i]) count=count+1 i=i+1 else: j=i sum=0 while(i<len(roots) and math.fabs(roots[i]-roots[i-1])<0.1): sum+=roots[i] i=i+1 actual[count]=(actual[count]+sum)/(i-j+1) return actual except: return("unexpected value experienced.Try again with a different interval")
def main(args): img_paths = sorted(list_images(args['folder_images'])) i = 1 print('[INFO] Starting ...') ls = os.listdir('output/') ls = [item.split('.')[0] for item in ls] s_t = time.time() for path in img_paths: name = path.split(os.path.sep)[-1].split('.')[0] if name in ls: print('[INFO] Processed {}'.format(name)) i += 1 continue try: start = time.time() if name < 'K6171-0012': intro.main({'image': path, 'intro': 'True'}) elif name == 'K6171-0012': intro.main({'image': path, 'intro': 'False'}) elif name < 'K6171-0754': extract.main({'image': path}) end = time.time() print('[INFO] processing {} - {} - {:.4f}s'.format( i, path.split(os.path.sep)[-1], end - start)) except: print('[INFO] ERROR! {}'.format(path)) i += 1 e_t = time.time() print('[INFO] Finished. Total: {} images - Total time: {:.4f}s'.format( i - 1, e_t - s_t))
def main(): if parser.extract: extract.main() if parser.train: train.main()
def integrate(exp,downer,upper): if(upper=='inf'): upper=100000 if(exp.isnumeric()): return(int(exp)*(upper-downer)) dx=(upper-downer)/1000 val1=cython.declare(cython.float) val2=cython.declare(cython.float) arr=[0] if(upper==downer): sum=0.0 elif(upper>downer): j=downer sum=0.0 while(j<upper): arr[0]=j val1=extract.main(exp,arr) arr[0]=j+dx val2=extract.main(exp,arr) sum+=(val1+val2)/2*dx j=j+dx else: j=upper sum=0.0 while(j<downer): arr[0]=j val1=extract.main(exp,arr) arr[0]=j-dx val2=extract.main(exp,arr) sum+=(val1+val2)/2*dx j=j-dx return sum
def send_data_to_graphite(self): extract.main() d = os.listdir() delay = 1 for files in d: if (("RL" in files or "TU" in files) and ".txt" in files): data = json.load(open(files)) f = files[0:7] if f in data: rc = int(data[f][3].get('rc')) vst = int(data[f][3].get('vst')) nmt = int(data[f][3].get('nmt')) frc = int(data[f][3].get('frc')) reboots = rc/((vst+1)/(3600*24)) upTime = (1-(nmt-vst)/nmt)*100 #return(f,getReboots(rc,vst),getUpTime(nmt,vst),getFilesPerDay(frc,vst)) print ('RLname : %s Reboot : %d Uptime : %d' % (f,reboots,upTime)) timestamp = int(time.time()) lines = [ 'RLname.%s.UpTime %d %d' % (f, upTime, timestamp), 'RLname.%s.Restarts %s %d' % (f, reboots, timestamp) ] message = '\n'.join(lines) + '\n' print(message) self.sock.send(message.encode("utf-8")) time.sleep(delay)
def main(): #Extract data from images target_dir = '../../Dataset/' if extract_data_again: ext.main() xtrain, ytrain, ytrain_label = getdata_file(target_dir+'DS2full-train.csv') xtest, ytest, ytest_label = getdata_file(target_dir+'DS2full-test.csv') #Scale Data scaler = pp.MinMaxScaler() scaler.fit(np.concatenate((xtrain,xtest))) xtrain = scaler.transform(xtrain) xtest = scaler.transform(xtest) original = sys.stdout eta = 0.1 filelog=open('result_'+str(eta)+'.txt','w') original = sys.stdout sys.stdout = Tee(sys.stdout, filelog) print('##########################################') print('Eta:',eta) n_epoch = 80 no_hidden = 30 NeuralNet = nn.neural_network(len(xtrain[0]),[30],len(ytrain[0])) NeuralNet.train(xtrain, ytrain,ytrain_label,eta, n_epoch,test_while_train = True, xtest = xtest,ytest_label= ytest_label, draw_plot=True) eta = eta*10 sys.stdout = original
def main2(): #Extract data from images target_dir = '../../Dataset/' if extract_data_again: ext.main() xtrain, ytrain, ytrain_label = getdata_file(target_dir+'DS2full-train.csv') xtest, ytest, ytest_label = getdata_file(target_dir+'DS2full-test.csv') #Scale Data scaler = pp.MinMaxScaler() scaler.fit(np.concatenate((xtrain,xtest))) xtrain = scaler.transform(xtrain) xtest = scaler.transform(xtest) original = sys.stdout eta = 0.01 gamma = 0.01 for i in range(5): filelog=open('result2_'+str(gamma)+'.txt','w') original = sys.stdout sys.stdout = Tee(sys.stdout, filelog) print('##########################################') print('Eta:',eta) print('Gamma:',gamma) #Set number of epochs n_epoch = 250 no_hidden = 20 NeuralNet = nn2.neural_network(len(xtrain[0]),[20],len(ytrain[0])) NeuralNet.train(xtrain, ytrain,ytrain_label,eta,gamma, n_epoch,test_while_train = True, xtest = xtest,ytest_label= ytest_label, draw_plot=True) sys.stdout = original gamma = gamma*10.0
def main(): # Get the name of the config file config_file = leverage_efficiency.base.get_config_filename(sys.argv) # Extract the data from source data folder into common format import extract extract.main(config_file) # Update data with most recent values (optional) #import update # This doesn't connect to the rest of the pipeline yet #update.main(config_file) # Calculate derived quantities like returns for input into calculations import transform transform.main(config_file) # Perform leverage efficiency calculations import analysis analysis.main(config_file) # Create figures import plots plots.main(config_file) # Create exact figures used in the paper import paper_plots paper_plots.main(config_file) # Create figures used in the EE lecture notes import lecture_plots lecture_plots.main(config_file)
def test_it_clears_the_database_when_reuploading_a_file(): extract.main(['./extract.py', 'fixture/simple.xlsx']) extract.main(['./extract.py', 'fixture/mps.xlsx']) sheet1 = scraperwiki.sql.select('count(*) as n from Sheet1') assert_equals(sheet1[0]['n'], 308) sheet2 = scraperwiki.sql.select('count(*) as n from Sheet2') assert_equals(sheet2[0]['n'], 1073)
def main(): # run scrape extract.main() # run link link.main() # run make make.main()
def isMonotone(exp,a,b): begin=min(a,b) end=max(a,b) arr=[] interval=(end-begin)/1000 while(begin<=end): arr.append(extract.main(exp,[begin])) begin+=interval arr.sort() if(math.fabs(arr[0]-extract.main(exp,[begin]))<0.01 and math.fabs(arr[len(arr)-1]-extract.main(exp,[end])<0.01)): return True return False
def integrate(exp,downer,upper): try: if(downer=='-inf'): downer=-300 if(upper=='inf'): upper=300 if(not('x' in exp)): return(float(exp)*(upper-downer)) if(math.fabs(downer)==math.fabs(upper)): flag=funcType(exp,upper) if(flag==10): exp="2*("+exp+")" downer=0 if(flag==-10): return 0 dx=(upper-downer)/1000 if(math.fabs(dx)<1): arr=[0] if(upper==downer): sum=0.0 elif(upper>downer): j=downer sum=0.0 while(j<upper): arr[0]=j val1=extract.main(exp,arr) arr[0]=j+dx val2=extract.main(exp,arr) sum+=(val1+val2)/2*dx j=j+dx else: j=upper sum=0.0 while(j<downer): arr[0]=j val1=extract.main(exp,arr) arr[0]=j-dx val2=extract.main(exp,arr) sum+=(val1+val2)/2*dx j=j-dx return sum else: down_lim=[downer] up_lim=[downer+(upper-downer)/10] sum=0 for i in range(10): sum+=integrate(exp,down_lim[i],up_lim[i]) down_lim.append(up_lim[i]) up_lim.append(up_lim[i]+(upper-downer)/10) return sum except: return("unexpected input")
def funcType(exp,upper): flag=0 for i in range(10): t1=random.random()*(upper)-upper val1=extract.main(exp,[t1]) val2=extract.main(exp,[-1*t1]) if(val1==val2): flag+=1 elif(val1==-1*val2): flag-=1 else: flag=0 return flag
def main(): parser = argparse.ArgumentParser() parser.add_argument('--crawl') args = parser.parse_args() if args.crawl == 'yes': c = raw_input("This will crawl the websites and will take very long time. Do you want to continue? ") if c == 'yes': crawl.crawl_trains() extract.main() transform.main() os.system('bash export.sh')
def main(): parser = argparse.ArgumentParser() parser.add_argument('--crawl') args = parser.parse_args() if args.crawl == 'yes': c = raw_input( "This will crawl the websites and will take very long time. Do you want to continue? " ) if c == 'yes': crawl.crawl_trains() extract.main() transform.main() os.system('bash export.sh')
def setUp(self): # Skip this test because it takes too long (>1 minute) # TODO: figure out how to declare a "long-running" test suite # and add this test to it. raise SkipTest() global SETUP_HAS_RUN # Subtract 1 second to help comparisons with file-modify time succeed, # since os.path.getmtime() is not millisecond-accurate self.start_time = datetime.now(UTC) - timedelta(seconds=1) super(TestExtract, self).setUp() if not SETUP_HAS_RUN: # Run extraction script. Warning, this takes 1 minute or more extract.main() SETUP_HAS_RUN = True
def test_main_return_values(arguments, return_code, message, monkeypatch, capsys): monkeypatch.setattr('extract.call_docker', lambda **_: None) monkeypatch.setattr('extract.sys.argv', arguments) monkeypatch.setattr('extract.subprocess.run', exec_stub) assert main() == return_code assert message in capsys.readouterr().err
def main(): parser = argparse.ArgumentParser() parser.add_argument("input", help="File of URLs to be analyzed") parser.add_argument("output", help="Output File") args = parser.parse_args() if args.input and args.output: # Update phishtank database print('Download and update phishtank database...') update_db() # Starts extraction print('Starts extraction...') extract.main(args.input, args.output) print(''' ####################################### # Dataset generated successfully! # ####################################### ''')
def test_main_return_values(arguments, return_code, message, monkeypatch, capsys): monkeypatch.setattr( 'extract.call_docker', lambda input_file, container, target, report_file, memory_limit: None) monkeypatch.setattr('extract.sys.argv', arguments) monkeypatch.setattr('extract.subprocess.run', exec_stub) assert main() == return_code assert message in capsys.readouterr().err
def input_num(self): input_window = tk.Tk() input_window.geometry('170x100+' + str(int(0.5 * input_window.winfo_screenwidth())) + '+' + str(int(0.5 * input_window.winfo_screenheight()))) input_window.title('输入') input_entry = tk.Entry(input_window, width = 15, font = ('Arial', 10)) input_entry.place(x = 30, y = 25, anchor = 'w') start = tk.Button(input_window, text = '开始', command = lambda : extract.main(input_entry.get(), self.extracted_name, self.show_res)) start.place(x = 70, y = 65, anchor = 'w')
def dirDeriv(exp,point,vector): dim=len(vector) dird=[] for i in range(dim): dird.append(CallDiff(exp,var_list[i])) comp=[] try: for i in range(dim): comp.append(extract.main(dird[i],point)*vector[i]) return comp except: return("function not derivable")
def differentiate(exp,x,order): arr=[x] i=1 for i in range(1,order+1): if(not('x' in exp)): return 0 exp=CallDiff(exp,'x') try: der=extract.main(exp,arr) return der except: return("function not derivable")
def EqnSolver(exp,x0,x1): count=0 try: while((math.fabs(x1-x0))>0.01 and count<100): func1=extract.main(exp,[x1]) func0=extract.main(exp,[x0]) if(math.fabs(func1)<0.09 and math.fabs(func0)<0.09): break x2=x1-func1*(x1-x0)/(func1-func0) x0,x1=x1,x2 count=count+1 if(count==100): return("please try again with better root approximation.Perhaps no roots exist") if(math.fabs(x1-x0)<0.1): if(math.fabs(func1)<0.09 and math.fabs(func0)<0.09): return x1 else: return("high probability that roots don't exist") else: return("two roots were found"+str(x0)+","+str(x1)) except: return("method failed.Please try again with another approximation")
def test(text1,text2,t1,t2,text3,text4,item): x2=arange(t1,t2,0.01) y1=zeros(len(x2)) y2=zeros(len(x2)) z=[None] if item==0: plt.xlabel(text3) plt.ylabel(text4) for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) y1[i]=extract.main(text2,z) plot(y2,y1) xlabel(text3) ylabel(text4) title('f(x) vs g(x)') show() if item==1: xlabel(text3) ylabel(text4) for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) #y1[i]=extract.main(text2,z) plot(x2,y2) title('f(x) vs x') show() if item==3: xlabel(text3) ylabel(text4) for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) #y1[i]=extract.main(text2,z) plot(x2,y2) title('g(x) vs x') show() if item==2: xlabel(text3) ylabel(text4) for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) y1[i]=extract.main(text2,z) plot(x2,y2) plot(x2,y1) title('g(x) vs x') show()
def test(text1,text2,t1,t2,text3,text4,item): n=50*(t2-t1)/2 x2=linspace(t1,t2,n) y1=zeros(len(x2)) y2=zeros(len(x2)) z=[None] if item==0: plt.xlabel(text3) plt.ylabel(text4) for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) y1[i]=extract.main(text2,z) plt.figure() plt.plot(y1,y2) plt.savefig("example.png") if item==1: plt.xlabel(text3) plt.ylabel(text4) for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) #y1[i]=extract.main(text2,z) plt.figure() plt.plot(x2,y2) plt.savefig("example.png") if item==3: plt.xlabel(text3) plt.ylabel(text4) for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) #y1[i]=extract.main(text2,z) plt.figure() plt.plot(x2,y2) plt.savefig("example.png") if item==2: plt.xlabel("X axis") plt.ylabel("Y axis") for i in range(len(x2)): z=[x2[i]] y2[i]=extract.main(text1,z) y1[i]=extract.main(text2,z) plt.figure() plt.plot(x2,y2,label=text3) plt.plot(x2,y1,label=text4) plt.savefig("example.png")
def optimize_min(exp, dim, arrmin, arrmax): flag = -1 count = 0 while count < 50: count = count + 1 if flag == 0 or flag == -1: points = [] * (dim + 1) values = [] for i in range(dim + 1): points.append([0] * (dim)) temp = [] * (dim) for j in range(dim): temp.append(arrmin[j] + (arrmax[j] - arrmin[j]) * random.random()) points[i] = temp values.append(extract.main(exp, points[i])) points[i] = numpy.array(points[i]) values = numpy.array(values) index = values.argsort() temp = points for i in range(dim + 1): points[i] = temp[index[i]] values.sort() if math.fabs((values[dim] - values[0]) / values[0]) < 0.01: break if True in (points[dim] - points[0]) < numpy.array([0.05] * (dim)) and True in ( points[dim] - points[0] ) > numpy.array([-0.05] * (dim)): break x0 = numpy.array([0] * dim) for i in range(dim): x0 = x0 + points[dim] x0 = x0 / dim xr = numpy.array([0] * (dim)) xr = 2 * x0 - points[dim] if extract.main(exp, xr) < values[dim] and extract.main(exp, xr) >= values[0]: gr = xr >= numpy.array(arrmin) sm = xr <= numpy.array(arrmax) if False in gr or False in sm: flag = 0 continue points[dim] = xr values[dim] = extract.main(exp, xr) flag = 1 continue elif extract.main(exp, xr) < values[0]: xe = 2 * xr - x0 gr = xr >= numpy.array(arrmin) sm = xr <= numpy.array(arrmax) if False in gr or False in sm: flag = 0 continue if extract.main(exp, xe) < extract.main(exp, xr): points[dim] = xe values[dim] = extract.main(exp, xe) flag = 1 continue else: points[dim] = xr values[dim] = extract.main(exp, xr) flag = 1 continue else: xc = 0.5 * xr + 0.5 * x0 gr = xr >= numpy.array(arrmin) sm = xr <= numpy.array(arrmax) if False in gr or False in sm: flag = 0 continue if extract.main(exp, xc) < extract.main(exp, xr): points[dim] = xc values[dim] = extract.main(exp, xc) flag = 1 continue elif extract.main(exp, xr) > values[dim]: xc = 0.5 * values[dim] + 0.5 * x0 if extract.main(exp, xc) < values[dim]: points[dim] = xc values[dim] = extract.main(exp, xc) flag = 1 continue else: for i in range(1, dim + 1): points[i] = 0.5 * points[0] + 0.5 * points[i] values[i] = extract.main(exp, points[i]) flag = 1 if math.fabs((values[dim] - values[0]) / values[0]) < 0.01: return values[0] if True in (points[dim] - points[0]) < ([0.05] * (dim)) and True in (points[dim] - points[0]) > ([-0.05] * (dim)): return min(values) return min(values)
def main(): embed.main() extract.main() evaluate.main()
import eval import extract if __name__ == '__main__': extract.main('data/Corpus.DEV.txt', 'data/Corpus.TRAIN.txt', 'data/TRAIN.annotations', 'output.dev.txt') eval.main('data/DEV.annotations', 'output.dev.txt')
while choice != 5: print('\nMenu:') print( '1 -> Create Dataset.\n2 -> Classify using kNN.\n3 -> Classify using MNB.\n4 -> Exit.' ) choice = int(input('Enter your choice: ')) if choice == 1: # Create Dataset reply = input( 'Do you want get emails from your email account? (y/n): ' )[0].lower() if reply == 'n': dataset_name = input( 'Enter the name of existing dataset folder: ') ex.main(dataset_name) elif reply == 'y': usr = input('Email: ') pwd = getpass('Password: '******'Enter a name for your dataset: ') if platform.system() == 'Windows': dataset_path = current_path + dataset_name + "\\" elif platform.system() == 'Linux': dataset_path = current_path + dataset_name + "/" if not os.path.exists(dataset_path): os.mkdir(dataset_path) print('Your Folders:')
if platform.system() == 'Windows': current_path = os.path.dirname(os.path.abspath(__file__)) + "\\" elif platform.system() == 'Linux': current_path = os.path.dirname(os.path.abspath(__file__)) + "/" choice = 0 while choice != 5: print('\nMenu:') print('1 -> Create Dataset.\n2 -> Classify using kNN.\n3 -> Classify using MNB.\n4 -> Exit.') choice = int(input('Enter your choice: ')) if choice == 1: # Create Dataset reply = input('Do you want get emails from your email account? (y/n): ')[0].lower() if reply == 'n': dataset_name = input('Enter the name of existing dataset folder: ') ex.main(dataset_name) elif reply == 'y': usr = input('Email: ') pwd = getpass('Password: '******'Enter a name for your dataset: ') if platform.system() == 'Windows': dataset_path = current_path + dataset_name + "\\" elif platform.system() == 'Linux': dataset_path = current_path + dataset_name + "/" if not os.path.exists(dataset_path): os.mkdir(dataset_path) print('Your Folders:')
def main(): usage = "Usage: vcfPytools.py [tool] [options]\n\n" + \ "Available tools:\n" + \ " annotate:\n\tAnnotate the vcf file with membership in other vcf files.\n" + \ " extract:\n\tExtract vcf records from a region.\n" + \ " filter:\n\tFilter the vcf file.\n" + \ " indel:\n\tIndel manipulation tools.\n" + \ " intersect:\n\tGenerate the intersection of two vcf files.\n" + \ " merge:\n\tMerge a list of vcf files.\n" + \ " multi:\n\tFind the intersections and unique fractions of multiple vcf files.\n" + \ " sort:\n\tSort a vcf file.\n" + \ " stats:\n\tGenerate statistics from a vcf file.\n" + \ " union:\n\tGenerate the union of two vcf files.\n" + \ " unique:\n\tGenerate the unique fraction from two vcf files.\n" + \ " validate:\n\tValidate the input vcf file.\n\n" + \ "vcfPytools.py [tool] --help for information on a specific tool." # Determine the requested tool. if len(sys.argv) > 1: tool = sys.argv[1] else: print >> sys.stderr, usage exit(1) if tool == "annotate": import annotate success = annotate.main() elif tool == "extract": import extract success = extract.main() elif tool == "filter": import filter success = filter.main() elif tool == "intersect": import intersect success = intersect.main() elif tool == "indel": import indel success = indel.main() elif tool == "multi": import multi success = multi.main() elif tool == "merge": import merge success = merge.main() elif tool == "sort": import sort success = sort.main() elif tool == "stats": import stats success = stats.main() elif tool == "union": import union success = union.main() elif tool == "unique": import unique success = unique.main() elif tool == "test": import test success = test.main() elif tool == "validate": import validate success = validate.main() elif tool == "--help" or tool == "-h" or tool == "?": print >> sys.stderr, usage else: print >> sys.stderr, "Unknown tool: ",tool print >> sys.stderr, "\n", usage exit(1) # If program completed properly, terminate. if success == 0: exit(0)
def multiDimensionInteg(exp,dim,down,up): minarr=[None]*dim maxarr=[None]*dim res=0.0 pro=1.0 j=0 flag_down=[] flag_up=[] while(j<dim): flag_down.append(0) flag_up.append(0) k=j-1 while(k>=0): if(var_list[k] in str(up[j])): flag_up[j]=1 if(var_list[k] in str(down[j])): flag_down[j]=1 k=k-1 if(flag_up[j]==0 and flag_down[j]==0): minarr[j],maxarr[j]=float(down[j]),float(up[j]) elif(flag_up[j]==1 and flag_down[j]==0): temp1=(Max(up[j],j,minarr[0:j],maxarr[0:j])) temp2=(Min(up[j],j,minarr[0:j],maxarr[0:j])) temp3=float(down[j]) if(temp1>=temp3): maxarr[j]=temp1 else: maxarr[j]=temp3 if(temp2<=temp3): minarr[j]=temp2 else: minarr[j]=temp3 elif(flag_up[j]==0 and flag_down[j]==1): temp1=(Max(down[j],j,minarr[0:j],maxarr[0:j])) temp2=(Min(down[j],j,minarr[0:j],maxarr[0:j])) temp3=float(up[j]) if(temp1>=temp3): maxarr[j]=temp1 else: maxarr[j]=temp3 if(temp2<=temp3): minarr[j]=temp2 else: minarr[j]=temp3 else: temp1=(Max(up[j],j,minarr[0:j],maxarr[0:j])) temp2=(Min(up[j],j,minarr[0:j],maxarr[0:j])) temp3=(Max(down[j],j,minarr[0:j],maxarr[0:j])) temp4=(Min(down[j],j,minarr[0:j],maxarr[0:j])) if(temp1>=temp3): maxarr[j]=temp1 else: maxarr[j]=temp3 if(temp2<=temp4): minarr[j]=temp2 else: minarr[j]=temp4 j=j+1 if(minarr[0]>maxarr[0]): minarr[0],maxarr[0]=maxarr[0],minarr[0] try: for i in range(1000): arr=[] j=0 while(j<dim): arr.append((maxarr[j]-minarr[j])*random.random()+minarr[j]) j=j+1 f1=extract.main(exp,arr) flag=1 for k in range(dim): temp1=extract.main(down[k],arr[0:k]) temp2=extract.main(up[k],arr[0:k]) if(not((arr[k]<temp1 and arr[k]>temp2) or (arr[k]>temp1 and arr[k]<temp2))): flag=0 if(temp1>temp2): flag=-1*flag res+=f1*flag res/=1000 for i in range(dim): res*=(maxarr[i]-minarr[i]) return res except: return("unexpected input")
console.setLevel(logging.CRITICAL) # Set a format which is simpler for console use formatter = logging.Formatter('%(message)s') # Tell the handler to use this format console.setFormatter(formatter) # Add the handler to the root logger logging.getLogger('').addHandler(console) # Create a logger log = logging.getLogger(__name__) # # RUN SELECTED COMMAND # if cliArgs.command == "simulate": # Run simulate.py simulate.main(cliArgs) elif cliArgs.command == "list": # Run list.py list.main() elif cliArgs.command == "convert": # Run convert.py convert.main(cliArgs) elif cliArgs.command == "extract": # Run extract.py extract.main(cliArgs)
def test_it_returns_error_json(): rawOutput = extract.main(['./extract.py','fixture/empty-header-cells.csv']) output = json.loads(rawOutput) assert("errorType" in output) assert_equals(output["errorType"],"NullHeaderError")
def answer(self,event): f=open("data.txt",'w') t1=self.tc.GetValue() t2=self.tc2.GetValue() self.imp.Append(t1) f.write(t1+'\n') self.imp.Append(t2) f.write(t2+'\n') print self.k if self.k<=5 and self.k>=0: # matrices (part 1) text=self.tc.GetValue() print(text) a=self.conv(text) text2=self.tc2.GetValue() print(text2) b=self.conv(text2) if self.k==0: try: ans=matrix(a)+matrix(b) ans=str(ans) self.text12.SetValue(ans) except: ans='Either of the matrix is not given in the correct format' self.text12.SetValue(ans) if self.k==1: try: ans=matrix(a)-matrix(b) ans=str(ans) self.text12.SetValue(ans) except: ans='Either of the matrix is not given in the correct format' self.text12.SetValue(ans) if self.k==2: try: ans=dot(matrix(a),matrix(b)) ans=str(ans) self.text12.SetValue(ans) except: ans='Either of the matrix is not given in the correct format' self.text12.SetValue(ans) if self.k==3: try: if determinant.determinant(a)!=0: v=matrix(a).I ans=dot(v,matrix(b)) ans=str(ans) self.text12.SetValue(ans) elif determinant.determinant(a)==0: ans='Given an invertible matrix' self.text12.SetValue(ans) except: ans='Either of the matrix is not given in the correct format' self.text12.SetValue(ans) if self.k==4: try: if determinant.determinant(a)!=0: ans=matrix(a).I ans=str(ans) self.text12.SetValue(ans) elif determinant.determinant(a)==0: ans='The matrix is not invertible' self.text12.SetValue(ans) except: ans='The matrix is not given inthe correct format' self.text12.SetValue(ans) if self.k==5: try: c=determinant.determinant(a) ans=str(c) self.text12.SetValue(ans) except: ans='The matrix given is not in the correct format' self.text12.SetValue(ans) if self.k>5 and self.k<=14 : self.text2.SetLabel('') text=self.tc.GetValue() # matrices (part 2) print(text) a=self.conv(text) if self.k==6: try: a=matrix(a) m=rank(a) m=str(m) self.text12.SetValue(m) except: m='The given input is not in the correct format' self.text12.SetValue(m) if self.k==7: try: c=matrix(a) ans=gauss.test(c,len(a)) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not in the correct format' self.text12.SetValue(ans) if self.k==8: try: l,u,d=ludecomposition.test(a) ans='l is ',l,'u is',u,'and d is',d ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not in the correct format' self.text12.SetValue(ans) if self.k==9: try: ans=matrix(a).T ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not in the correct format' self.text12.SetValue(ans) if self.k==10: try: a=matrix(a) ans1,ans2=qr_decomposition.test(text) ans='Q is ',ans1,'R is ',ans2,'in QR decomposition' ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==11: try: ans=qr_decomposition2.test(text) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==12: try: ans=eigen.test(text) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is incorrect' self.text12.SetValue(ans) if self.k>=16 and self.k<20: # differential calculus text2=self.tc2.GetValue() text=self.tc.GetValue() if self.k==16: try: b=self.conv(text2) print b[0],b[1] ans=symbolic.differentiate(text,float(b[0]),int(b[1])) ans=str(ans) self.text12.SetValue(ans) except: ans='please check the input that you have given' self.text12.SetValue(ans) if self.k==17: try: ans=symbolic.CallDiff(text,text2) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==18: try: b=self.conv(text2) ans=symbolic.dirDeriv(text,b[0],b[1]) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==19: try: ans=symbolic.Laplacian(text) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k>=21 and self.k<=25: # polynomials text=self.tc.GetValue() text2=self.tc2.GetValue() Poly=Polynomial() if self.k==21: try: ans=Poly.addPolynomial(text,text2) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==22: try: ans=Poly.subtractPolynomial(text,text2) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==23: try: ans=Poly.MultiplyPolynomial(text,text2) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==24: try: ans=Poly.dividePolynomial(text,text2) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==25: try: self.tc2.SetValue('') ans=rootpoly(text) ans=str(ans) # karna hain self.text12.SetValue(ans) except: ans='he choice not selected' self.text12.SetValue(ans) if self.k>=27 and self.k<=30: # integral calculus text=self.tc.GetValue() text2=self.tc2.GetValue() print(text2) if self.k==27: try: b=self.conv(text2) lower=[None]*len(b) upper=[None]*len(b) ans=symbolic.integrate(text,b[0],b[1]) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==28: try: b=self.conv3(text2) print 'mridul',b lower=[None]*len(b) upper=[None]*len(b) for i in range(len(b)): lower[i]=b[i][0] upper[i]=b[i][1] print 'mridul',lower,upper ans=symbolic.multiDimensionInteg(text,len(b),lower,upper) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==29: try: b=self.conv(text2) lower=[None]*len(b) upper=[None]*len(b) if len(b)==6: ans=diffeqn.solveDiffEqn4(text,b[:len(b)-2],b[len(b)-2],b[len(b)-1]) # the first element b[len(b)-1] is the point where the f(x) has to be calculated and the rest are the initial conditions if len(b)==5: ans=diffeqn.solveDiffEqn3(text,b[:len(b)-2],b[len(b)-2],b[len(b)-1]) if len(b)==4: ans=diffeqn.solveDiffEqn2(text,b[:len(b)-2],b[len(b)-2],b[len(b)-1]) # the first element b[0] is the point where the f(x) has to be calculated and the rest are the initial conditions if len(b)==3: ans=diffeqn.solveDiffEqn1(text,b[:len(b)-2],b[len(b)-2],b[len(b)-1]) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not in not in the standard format demanded by CAS' self.text12.SetValue(ans) if self.k==30: try: b=self.conv3(text2) lower=[None]*len(b) upper=[None]*len(b) print b ans=diffeqn.LaplaceEqn(text,b[0],b[2],b[1],b[3]) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k>=37 and self.k<=44: # statistics the data points text=self.tc.GetValue() print(text) b=self.conv(text) lower=[None]*len(b) middle=[None]*len(b) upper=[None]*len(b) if self.k==37: try: text2=self.tc2.GetValue() for i in range(len(b)): lower[i]=b[i][0] upper[i]=b[i][1] ans=regression.LeastSquare(int(text2),lower,upper) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct format' self.text12.SetValue(ans) if self.k==38: try: for i in range(len(b)): lower[i]=b[i][0] middle[i]=b[i][1] upper[i]=b[i][2] ans=regression.PlaneFit(lower,middle,upper) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==39: try: for i in range(len(b)): lower[i]=b[i][0] upper[i]=b[i][1] ans=regression.ExponentialCurve(lower,upper) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==40: try: for i in range(len(b)): lower[i]=b[i][0] upper[i]=b[i][1] ans=regression.LogarithmicCurve(lower,upper) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==41: try: ans=regression.SplineInterpolation(b) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==42: try: for i in range(len(b)): lower[i]=b[i][0] upper[i]=b[i][1] ans=regression.SpearsmanCoff(lower,upper) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==43: try: for i in range(len(b)): lower[i]=b[i][0] upper[i]=b[i][1] ans=regression.Pearson(lower,upper) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==44: try: ans=regression.tau(b) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k>=32 and self.k<=36: # playing with Fourier text=self.tc.GetValue() print (text) if self.k==32: try: text2=self.tc2.GetValue() b=self.conv(text2) ans=SinCoeff(text,b[0],b[1],b[2]) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==33: try: text2=self.tc2.GetValue() b=self.conv(text2) ans=CosCoeff(text,b[0],b[1],b[2]) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==34: try: text2=self.tc2.GetValue() b=self.conv(text2) ans=FourierCoeff(text,b[0],b[1],b[2]) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==35: try: b=self.conv2(text) ans=discreteFourier(b,len(b)) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==36: try: b=self.conv2(text) ans=inverseVal(b,len(b)) ans=str(ans) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k>=46 and self.k<=47: # optimization text=self.tc.GetValue() print (text) text2=self.tc2.GetValue() b=self.conv(text2) lower=[None]*len(b) upper=[None]*len(b) for i in range(len(b)): lower[i]=b[i][0] upper[i]=b[i][1] if self.k==46: try: m=symbolic.Max(text,len(b),lower,upper) ans=str(m) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==47: try: m=symbolic.Min(text,len(b),lower,upper) ans=str(m) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k>=49: #evaluating expression text=self.tc.GetValue() print (text) text2=self.tc2.GetValue() b=self.conv(text2) if self.k==49: try: m=symbolic.roots_interval(text,b[0],b[1]) ans=str(m) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==50: try: m=symbolic.EqnSolver(text,b[0],b[1]) ans=str(m) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) if self.k==51: try: m=extract.main(text,b) ans=str(m) self.text12.SetValue(ans) except: ans='The given input is not correct' self.text12.SetValue(ans) t3=self.text12.GetValue() self.imp.Append(t3) f.write(t3+'\n') f.close()
def main(): usage = "Usage: vcfPytools.py [tool] [options]\n\n" + \ "Available tools:\n" + \ " annotate:\n\tAnnotate the vcf file with membership in other vcf files.\n" + \ " extract:\n\tExtract vcf records from a region.\n" + \ " filter:\n\tFilter the vcf file.\n" + \ " indel:\n\tIndel manipulation tools.\n" + \ " intersect:\n\tGenerate the intersection of two vcf files.\n" + \ " merge:\n\tMerge a list of vcf files.\n" + \ " multi:\n\tFind the intersections and unique fractions of multiple vcf files.\n" + \ " sort:\n\tSort a vcf file.\n" + \ " stats:\n\tGenerate statistics from a vcf file.\n" + \ " union:\n\tGenerate the union of two vcf files.\n" + \ " unique:\n\tGenerate the unique fraction from two vcf files.\n" + \ " validate:\n\tValidate the input vcf file.\n\n" + \ "vcfPytools.py [tool] --help for information on a specific tool." # Determine the requested tool. if len(sys.argv) > 1: tool = sys.argv[1] else: print >> sys.stderr, usage exit(1) if tool == "annotate": import annotate success = annotate.main() elif tool == "extract": import extract success = extract.main() elif tool == "filter": import filter success = filter.main() elif tool == "intersect": import intersect success = intersect.main() elif tool == "indel": import indel success = indel.main() elif tool == "multi": import multi success = multi.main() elif tool == "merge": import merge success = merge.main() elif tool == "sort": import sort success = sort.main() elif tool == "stats": import stats success = stats.main() elif tool == "union": import union success = union.main() elif tool == "unique": import unique success = unique.main() elif tool == "test": import test success = test.main() elif tool == "validate": import validate success = validate.main() elif tool == "--help" or tool == "-h" or tool == "?": print >> sys.stderr, usage else: print >> sys.stderr, "Unknown tool: ", tool print >> sys.stderr, "\n", usage exit(1) # If program completed properly, terminate. if success == 0: exit(0)
def test_it_logs_progress_to_a_text_file(): extract.main(['./extract.py','fixture/simple.xls']) with open('log.txt', 'r') as f: assert("STARTED" in f.read())
import traceback import time import extract import read_csv import write_csv import read_lines import processsing if __name__ == "__main__": print("_" * 50) print("Start script 'time_reporting.py'") try: dir, csv_list = extract.main() files = read_csv.main(csv_list) datas = read_lines.main(files, csv_list) datas_transformed = processsing.main(datas) write_csv.main(dir, datas_transformed) print("Finish script 'time_reporting.py'") except: traceback.print_exc() time.sleep(24 * 60 * 60)
def test_it_returns_success_json(): rawOutput = extract.main(['./extract.py', 'fixture/simple.xls']) output = json.loads(rawOutput) assert ("errorType" in output) assert_equals(output["errorType"], None)
def test_it_returns_error_json(): rawOutput = extract.main( ['./extract.py', 'fixture/empty-header-cells.csv']) output = json.loads(rawOutput) assert ("errorType" in output) assert_equals(output["errorType"], "NullHeaderError")
import sys import extract as ex import eval as ev train_file, annotation_file, output_file = sys.argv[1:] ex.main(train_file, output_file) ev.main(annotation_file, output_file)
def LaplaceEqn(g,boundary,boundary1,pts,pt): for i in range(len(pts)): pts[i]=int(pts[i]) #print(pts) pt[0]=float(pt[0]) pt[1]=float(pt[1]) # print(pt) m=int(math.fabs(int(pts[0]/1))) n=int(math.fabs(int(pts[1]/1))) t1=1 t2=1 A=[0]*((m-1)*(n-1)) for i in range((m-1)*(n-1)): A[i]=[0]*((m-1)*(n-1)) D=[0]*(m-1) I=[0]*(m-1) for i in range(m-1): D[i]=[0]*(m-1) I[i]=[0]*(m-1) for j in range(m-1): if(i==j): D[i][j]=4 I[i][j]=-1 elif(math.fabs(i-j)==1): D[i][j]=-1 i=0 while(i<((m-1)*(n-1))): j=0 while(j<((m-1)*(n-1))): MatrixFill(A,i,j,D,I,m-1) j+=(m-1) i+=(m-1) val=[] if(pts[0]<0): t1=-1 if(pts[1]<0): t2=-1 y_cor=1*t2 for i in range(n-1): x_cor=1*t1 for j in range(m-1): if(math.fabs(x_cor)==1 and math.fabs(y_cor)==1): val.append(extract.main(boundary[0],[x_cor,y_cor])+extract.main(boundary[1],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) elif((x_cor)==(pts[0]-1*t1) and (y_cor)==(pts[1]-1*t2)): val.append(extract.main(boundary1[0],[x_cor,y_cor])+extract.main(boundary1[1],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) elif((x_cor)==(pts[0]-1*t1) and math.fabs(y_cor)==1): val.append(extract.main(boundary1[0],[x_cor,y_cor])+extract.main(boundary[1],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) elif((y_cor)==(pts[1]-1*t2) and math.fabs(x_cor)==1): val.append(extract.main(boundary[0],[x_cor,y_cor])+extract.main(boundary1[1],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) elif(math.fabs(x_cor)==1): val.append(extract.main(boundary[1],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) elif(math.fabs(y_cor)==1): val.append(extract.main(boundary[0],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) elif((x_cor)==(pts[0]-1*t1)): val.append(extract.main(boundary1[1],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) elif((y_cor)==(pts[1]-1*t2)): val.append(extract.main(boundary1[0],[x_cor,y_cor])-extract.main(g,[x_cor,y_cor])*(math.pow(1,2))) else: val.append(extract.main(g,[x_cor,y_cor])*(math.pow(1,2))*-1) x_cor+=1*t1 y_cor+=1*t2 A=matrix(A) val=matrix(val) u=(A.I)*(val.T) u.tolist() x1=int(pt[0]) y1=int(pt[1]) w1=max(1-math.sqrt((x1-pt[0])**2+(y1-pt[1])**2),0) w2=max(1-math.sqrt((x1+t1-pt[0])**2+(y1-pt[1])**2),0) w3=max(1-math.sqrt((x1-pt[0])**2+(y1+t2-pt[1])**2),0) w4=max(1-math.sqrt((x1+t1-pt[0])**2+(y1+t2-pt[1])**2),0) if(x1!=0 and y1!=0): u1=u[math.fabs(x1)-1+(m-1)*(math.fabs(y1)-1)] else: if(x1==0): u1=extract.main(boundary[1],[x1,y1]) elif(y1==0): u1=extract.main(boundary[0],[x1,y1]) if(y1!=0 and x1!=pts[0]-t1): u2=u[math.fabs(x1)+(m-1)*(math.fabs(y1)-1)] else: if(y1==0): u2=extract.main(boundary[0],[x1,y1]) elif(x1==pts[0]-t1): u2=extract.main(boundary1[1],[x1,y1]) if(x1!=0 and y1!=pts[1]-t2): u3=u[math.fabs(x1)-1+(m-1)*(math.fabs(y1))] else: if(x1==0): u3=extract.main(boundary[1],[x1,y1]) elif(y1==pts[1]-t2): u3=extract.main(boundary1[1],[x1,y1]) if(x1!=pts[0]-t1 and y1!=pts[1]-t2): u4=u[math.fabs(x1)+(m-1)*(math.fabs(y1))] else: if(x1==pts[0]-t1): u4=extract.main(boundary1[1],[x1,y1]) elif(y1==pts[1]-t2): u4=extract.main(boundary1[1],[x1,y1]) u_final=(w1*u1+w2*u2+w3*u3+w4*u4)/(w1+w2+w3+w4) return(u_final)
def test_it_logs_stack_traces(): extract.main(['./extract.py','fixture/empty-header-cells.csv']) with open('log.txt', 'r') as f: logOutput = f.read() assert('Traceback (most recent call last):' in logOutput) assert('NullHeaderError' in logOutput)
def extract(text=None, filename=None): from extract import main if filename: with open(filename) as f: text = f.read() print(main(text))
def test_it_clears_the_log_before_each_run(): extract.main(['./extract.py','fixture/simple.xls']) with open('log.txt', 'r') as f: assert_equals(f.read().count('STARTED'), 1)
import cv2 import os import numpy as np import extract e = extract.main() print(e) a0 = e[0][0] a1 = e[0][1] b0 = e[1][0] b1 = e[1][1] c0 = e[2][0] c1 = e[2][1] cv2.destroyAllWindows() rgb = np.zeros((100, 512, 3), np.uint8) lower_range = np.zeros((100, 512, 3), np.uint8) upper_range = np.zeros((100, 512, 3), np.uint8) draw = np.zeros((480, 640, 3), np.uint8) cap = cv2.VideoCapture(0) def nothing(x): pass cv2.namedWindow('control & lower_range') cv2.createTrackbar('r', 'control & lower_range', 0, 255, nothing)
def test_it_returns_success_json(): rawOutput = extract.main(['./extract.py','fixture/simple.xls']) output = json.loads(rawOutput) assert("errorType" in output) assert_equals(output["errorType"],None)