Exemplo n.º 1
0
def get_face_alignment(image_bytes):
    im = transform_image(image_bytes=image_bytes)

    # Detect Landmark
    points = fbc.getLandmarks(faceDetector, landmarkDetector, im)
    points = np.array(points)

    print('Landmarks detected')

    # Convert image to floating point in the range 0 to 1
    im = np.float32(im) / 255.0

    # Specify the size of aligned face image. Compute the normalized image by using the similarity transform

    # Dimension of output Image
    h = im.shape[0]  # 600
    w = im.shape[1]  # 600

    # Normalize the image to output coordinates
    imNorm, points = fbc.normalizeImagesAndLandmarks((h, w), im, points)
    imNorm = np.uint8(imNorm * 255)
    print("Aligned image is made.....")

    # This is aligned image
    return imNorm
Exemplo n.º 2
0
def perform_face_alignment(image_bytes):
    h=w=600
    points = fbc.getLandmarks(faceDetector, landmarkDetector, image_bytes)
    points = np.array(points)
    image_bytes = np.float32(image_bytes)/255.0
    imNorm, points = fbc.normalizeImagesAndLandmarks((h,w), image_bytes, points)
    imNorm = np.uint8(imNorm * 255)
    return imNorm#[:,:,::-1]
Exemplo n.º 3
0
def align_face(bytes_im):
    im = transform_image(image_bytes=bytes_im)

    points = fbc.getLandmarks(faceDetector, landmarkDetector5, im)

    points = np.array(points)

    im = np.float32(im) / 255.0

    # Dimensions of the output image
    h = im.shape[0]
    w = im.shape[1]

    imNorm, points = fbc.normalizeImagesAndLandmarks((h, w), im, points)

    imNorm = np.uint8(imNorm * 255)

    return imNorm
Exemplo n.º 4
0
def get_aligned_image(im):
    try:
        face_detector = dlib.get_frontal_face_detector()
        points = fbc.getLandmarks(face_detector, landmark_detector, im)
        points = np.array(points)
        im = np.float32(im) / 255.0

        print("Inside the get_aligned_face function.")

        h = 600
        w = 600

        imNorm, points = fbc.normalizeImagesAndLandmarks((h, w), im, points)
        imNorm = np.uint8(imNorm * 255)
        return imNorm

        return
    except Exception as e:
        print(repr(e))
        raise (e)
Exemplo n.º 5
0
def classify_image (event, context):
    try:
        content_type_header = event['headers']['content-type']
        body = base64.b64decode(event["body"])

        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        im_arr = np.frombuffer(picture.content, dtype=np.uint8)
        im = cv2.imdecode(im_arr, flags=cv2.IMREAD_COLOR)
        points = fbc.getLandmarks(faceDetector, landmarkDetector, im)
        points = np.array(points)
        im = np.float32(im)/255.0
        h = 600
        w = 600
        imNorm, points = fbc.normalizeImagesAndLandmarks((h, w), im, points)
        imNorm = np.uint8(imNorm*255)

        filename = picture.headers[b'Content-Disposition'].decode().split(';')[1].split('=')[1]
        if len(filename) < 4:
            filename = picture.headers[b'Content-Disposition'].decode().split(';')[2].split('=')[1]
        print ('all done')
        return {
            "statusCode": 200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({'file': filename.replace('"', ''), 'aligned_image': str (base64.b64encode (cv2.imencode ('.jpg', imNorm)[1])) })
        }
    except Exception as e:
        print(repr(e))
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({"error": repr(e)})
        }
Exemplo n.º 6
0
def get_aligned_image(image_bytes):
    print('Alignment process started...')
    (faceDetector, landmarkDetector) = face_landmark_detector()
    im = transform_image(image_bytes)

    # Detect landmarks
    points = fbc.getLandmarks(faceDetector, landmarkDetector, im)
    points = np.array(points)
    landmarksDetected = len(points)
    print(f'Landmarks detected: {landmarksDetected}')

    if landmarksDetected == 0:
        return None

    im = np.float32(im)/255.0

    h = im.shape[0] # 600
    w = im.shape[1] # 600

    imNorm, points = fbc.normalizeImagesAndLandmarks((h, w), im, points)
    imNorm = np.uint8(imNorm * 255)

    return imNorm # aligned image
Exemplo n.º 7
0
    # 归一化图片和特征点
    imagesNorm = []
    pointsNorm = []

    # 平均值
    pointsAvg = np.zeros((numLandmarks,2), dtype=np.float32)

    # 将图片规整到输出坐标系中并求解平均值
    for i, img in enumerate(images):
        points = allPoints[i]

        points = np.array(points)

        # print(points)

        img, points = fbc.normalizeImagesAndLandmarks((h,w),img,points)

        cv2.imshow("{}".format(i), img)

        pointsAvg = pointsAvg + (points/(1.0*numImages))

        # 添加边界点
        points = np.concatenate((points, boundaryPts), axis=0)

        pointsNorm.append(points)
        imagesNorm.append(img)

    pointsAvg = np.concatenate((pointsAvg, boundaryPts), axis=0)
    
    # 计算delaunay三角形
    rect = (0, 0, w, h)
Exemplo n.º 8
0
def align_face(event,context):
    try:
        print(event)
        print(context)
        content_type_header = event['headers']['content-type']
        print(event['body'])
        body = base64.b64decode(event["body"])
        print(body)
        print("BODY LOADED...")
        
        content_type = event.get('headers', {"content-type" : ''}).get('content-type')
        # body = bytes(body,'utf-8')
        multipart_data = decoder.MultipartDecoder(body, content_type).parts[0]
        img_io = io.BytesIO(multipart_data.content)
        img = Image.open(img_io)
        img = cv2.cvtColor(np.array(img),cv2.COLOR_BGR2RGB)

        PREDICTOR_PATH =  "shape_predictor_5_face_landmarks.dat"
        faceDetector = dlib.get_frontal_face_detector()

        landmarkDetector = dlib.shape_predictor(PREDICTOR_PATH)
        points = fbc.getLandmarks(faceDetector, landmarkDetector, img)

        if len(points) == 0:
            return {
                "statusCode": 202,
                "headers": {
                    'Content-Type': 'application/json',
                    'Access-Control-Allow-Origin': '*',
                    "Access-Control-Allow-Credentials": True
                },
                "body": json.dumps({'error': 'No Face detected in the image'})
            }

        points = np.array(points)
        img = np.float32(img)/255.0
        
        h = 600
        w = 600

        #Normalize image to output co-ord
        imNorm, points = fbc.normalizeImagesAndLandmarks((h,w), img, points)
        imNorm = np.uint8(imNorm*255)
        
        #encoded_img = base64.b64encode(imNorm).decode("utf-8") 
        serialized_img = base64.b64encode(cv2.imencode('.jpg', imNorm)[1]).decode()
        
        return {
            "statusCode": 200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({'aligned': serialized_img})
        }
        
    
    except Exception as e:
        print(repr(e))
        return {
            "statuscode" : 500,
            "headers" : {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin' : '*',
                'Access-Control-Allow-Credentials' : True
            },
            "body": json.dumps({"error": repr(e)})
        }
    img2 = cv2.imread("../data/images/girls/hexiaoping.jpg")

    # 获取关键特征点
    points1 = fbc.getLandmarks(faceDetector, landmarkDetector, img1)
    points2 = fbc.getLandmarks(faceDetector, landmarkDetector, img2)

    points1 = np.array(points1)
    points2 = np.array(points2)

    img1 = np.float32(img1) / 255.0
    img2 = np.float32(img2) / 255.0

    h = 480
    w = 480

    imgNorm1, points1 = fbc.normalizeImagesAndLandmarks((h, w), img1, points1)
    imgNorm2, points2 = fbc.normalizeImagesAndLandmarks((h, w), img2, points2)

    pointsAvg = (points1 + points2) / 2.0

    # 边界点
    boundaryPoints = fbc.getEightBoundaryPoints(h, w)
    points1 = np.concatenate((points1, boundaryPoints), axis=0)
    points2 = np.concatenate((points2, boundaryPoints), axis=0)
    pointsAvg = np.concatenate((pointsAvg, boundaryPoints), axis=0)

    # 就算细分三角形
    rect = (0, 0, w, h)
    dt = fbc.calculateDelaunayTriangles(rect, pointsAvg)

    winName = "Face Morphing"