Exemplo n.º 1
0
    def predict_ethnic(self, name):
        means = np.load('means_ethnic.npy')

        model = create_face_network(nb_class=4,
                                    hidden_dim=512,
                                    shape=(224, 224, 3))
        model.load_weights('weights_ethnic.hdf5')

        im = cv2.imread(name, cv2.IMREAD_COLOR)
        im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
        im = cv2.cvtColor(im, cv2.COLOR_GRAY2RGB)
        im = cv2.resize(im, (224, 224))
        im = np.float64(im)
        im /= 255.0
        im = im - means
        #return model.predict(np.array([im]))
        return model.predict(np.array([im]))
def predict_region(im):
    means = np.load('means_region.npy')

    model = create_face_network(nb_class=4,
                                hidden_dim=256,
                                shape=(224, 224, 3))
    model.load_weights('weights_region.hdf5')

    im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
    im = cv2.cvtColor(im, cv2.COLOR_GRAY2RGB)
    im = cv2.resize(im, (224, 224))
    # cv2.imshow("fsfs",im)
    # cv2.waitKey(0)
    im = np.float64(im)
    im /= 255.0
    im = im - means

    return model.predict(np.array([im]))
Exemplo n.º 3
0
def predict_ethnic(image_path):

    means = np.load('means_ethnic.npy')

    model = create_face_network(nb_class=4,
                                hidden_dim=512,
                                shape=(224, 224, 3))

    model.load_weights('weights_ethnic.hdf5')

    im = cv2.imread(image_path, cv2.IMREAD_COLOR)
    im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
    im = cv2.cvtColor(im, cv2.COLOR_GRAY2RGB)
    im = cv2.resize(im, (224, 224))
    im = np.float64(im)
    im /= 255.0
    im = im - means
    #print("NP: ", np)

    #print("np.array([im]): ", np.array([im]))
    #print("RESULT: ", model.predict(np.array([im])))
    result = model.predict(np.array([im]))
    race = ETHNIC[np.argmax(result)]
    return race
Exemplo n.º 4
0
X_data = X_data[p]
y_data = y_data[p]


X_train = X_data[0:int(round(train_split*num_images))]
y_train = y_data[0:int(round(train_split*num_images))]
X_test = X_data[int(round(train_split*num_images))+1:-1]
y_test = y_data[int(round(train_split*num_images))+1:-1]

means = np.mean(X_train, axis = 0)
X_train -= means
X_test -= means

np.save('means_ethnic.npy',means)

opt = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
checkpoint = ModelCheckpoint('weights_ethnic.hdf5', monitor='val_acc', verbose=1, save_best_only=True,
								 save_weights_only=True, mode='max')
model = create_face_network(nb_class=4, hidden_dim=512, shape=(224, 224, 3))
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model.fit(X_train, y_train,
	batch_size=32,
	epochs=10,
	verbose=1,
	callbacks=[checkpoint],
	validation_data=(X_test, y_test),
	shuffle=True,
	class_weight=None,
	sample_weight=None,
	initial_epoch=0)