Exemplo n.º 1
0
def face_gen(image_path, face_output):
    # Load the jpg file into a numpy array
    image = face_recognition_api.load_image_file(image_path)

    # Find all the faces in the image using a pre-trained convolutional neural network.
    # This method is more accurate than the default HOG model, but it's slower
    # unless you have an nvidia GPU and dlib compiled with CUDA extensions. But if you do,
    # this will use GPU acceleration and perform well.
    # See also: find_faces_in_picture.py
    face_locations = face_recognition_api.face_locations(
        image
    )  #face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")

    print("I found {} face(s) in this photograph.".format(len(face_locations)))
    if len(face_locations) < 1:
        outname = face_output.split('/')[-1]
        shutil.copy(image_path, 'trainData2face/zero_face/' + outname)

    for face_location in face_locations:

        # Print the location of each face in this image
        top, right, bottom, left = face_location
        print(
            "A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}"
            .format(top, left, bottom, right))

        # You can access the actual face itself like this:
        face_image = image[top:bottom, left:right]
        pil_image = Image.fromarray(face_image)
        pil_image.save(face_output)
face_names = []
process_this_frame = True

with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()

        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition_api.face_locations(small_frame)
            face_encodings = face_recognition_api.face_encodings(
                small_frame, face_locations)

            face_names = []
            predictions = []
            if len(face_encodings) > 0:
                closest_distances = clf.kneighbors(face_encodings,
                                                   n_neighbors=1)

                is_recognized = [
                    closest_distances[0][i][0] <= 0.5
                    for i in range(len(face_locations))
                ]

                # predict classes and cull classifications that are not with high confidence
Exemplo n.º 3
0
    def Fillattendances():
        sub = tx.get()

        if sub == '':
            err_screen1()
        else:
            df = pd.read_csv("StudentDetails\StudentDetails.csv")
            video_capture = cv2.VideoCapture(0)
            fname = 'classifier.pkl'
            if os.path.isfile(fname):
                with open(fname, 'rb') as f:
                    (le, clf) = pickle.load(f)
            else:
                print('\x1b[0;37;43m' +
                      "Classifier '{}' does not exist".format(fname) +
                      '\x1b[0m')
                quit()

            # Initialize some variables
            face_locations = []
            face_encodings = []
            face_names = []

            process_this_frame = True
            col_names = ['Enrollment', 'Name', 'Date', 'Time', 'status']
            attendance = pd.DataFrame(columns=col_names)

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                while True:
                    # Grab a single frame of video
                    ret, frame = video_capture.read()

                    # Resize frame of video to 1/4 size for faster face recognition processing
                    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

                    # Only process every other frame of video to save time
                    if process_this_frame:
                        # Find all the faces and face encodings in the current frame of video
                        face_locations = face_recognition_api.face_locations(
                            small_frame)
                        face_encodings = face_recognition_api.face_encodings(
                            small_frame, face_locations)

                        face_names = []
                        predictions = []
                        global Id

                        if len(face_encodings) > 0:
                            closest_distances = clf.kneighbors(face_encodings,
                                                               n_neighbors=1)

                            is_recognized = [
                                closest_distances[0][i][0] <= 0.5
                                for i in range(len(face_locations))
                            ]

                            global Subject
                            global aa
                            global date
                            global timeStamp
                            Subject = tx.get()
                            ts = time.time()
                            date = datetime.datetime.fromtimestamp(
                                ts).strftime('%Y-%m-%d')
                            timeStamp = datetime.datetime.fromtimestamp(
                                ts).strftime('%H:%M:%S')
                            status = "P"
                            # predict classes and cull classifications that are not with high confidence
                            predictions = [
                                (le.inverse_transform(int(pred)).title(),
                                 loc) if rec else ("Unknown.person", loc)
                                for pred, loc, rec in zip(
                                    clf.predict(face_encodings),
                                    face_locations, is_recognized)
                            ]

                        # # Predict the unknown faces in the video frame
                        # for face_encoding in face_encodings:
                        #     face_encoding = face_encoding.reshape(1, -1)
                        #
                        #     # predictions = clf.predict(face_encoding).ravel()
                        #     # person = le.inverse_transform(int(predictions[0]))
                        #
                        #     predictions = clf.predict_proba(face_encoding).ravel()
                        #     maxI = np.argmax(predictions)
                        #     person = le.inverse_transform(maxI)
                        #     confidence = predictions[maxI]
                        #     print(person, confidence)
                        #     if confidence < 0.7:
                        #         person = 'Unknown'
                        #
                        #     face_names.append(person.title())

                    process_this_frame = not process_this_frame

                    reg = 0
                    Name = 0
                    # Display the results
                    for name, (top, right, bottom, left) in predictions:
                        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
                        top *= 4
                        right *= 4
                        bottom *= 4
                        left *= 4

                        # Draw a box around the face
                        cv2.rectangle(frame, (left, top), (right, bottom),
                                      (0, 0, 255), 2)
                        #while name!='Unknown':

                        # Draw a label with a name below the face
                        cv2.rectangle(frame, (left, bottom - 35),
                                      (right, bottom), (0, 0, 255), cv2.FILLED)
                        font = cv2.FONT_HERSHEY_DUPLEX
                        cv2.putText(frame, name, (left + 6, bottom - 6), font,
                                    1.0, (255, 255, 255), 1)

                        reg = os.path.split(name)[-1].split(".")[1]

                        Name = os.path.split(name)[-1].split(".")[0]
                        attendance.loc[len(attendance)] = [
                            reg, Name, date, timeStamp, status
                        ]

                    # Display the resulting image
                    cv2.imshow('Video', frame)

                    attendance = attendance.drop_duplicates(['Enrollment'],
                                                            keep='first')

                    #attendance = attendance[attendance.Enrollment == 'person']

                    # Hit 'q' on the keyboard to quit!
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
                video_capture.release()

                # Release handle to the webcam
            Batch = ty.get()
            Subject = tx.get()
            ts = time.time()
            date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d')
            timeStamp = datetime.datetime.fromtimestamp(ts).strftime(
                '%H:%M:%S')
            Hour, Minute, Second = timeStamp.split(":")
            fileName = "Attendance/" + Batch + "_" + Subject + "_" + date + "_" + Hour + "-" + Minute + "-" + Second + ".csv"
            import pymysql.connections

            ###Connect to the database
            try:
                global cursor
                connection = pymysql.connect(host='localhost',
                                             user='******',
                                             password='',
                                             db='attendance')
                cursor = connection.cursor()
            except Exception as e:
                print(e)

            sql = "SELECT * FROM students WHERE BRANCH='" + Batch + "'"

            # Execute the SQL command
            cursor.execute(sql)
            # Fetch all the rows in a list of lists.
            results = cursor.fetchall()
            count = 0
            for row in results:

                no = row[1]

                namee = row[2]

                #Attendance[status] = ["P" if Enrollment in reg else "A"]

                status = "A"
                attendance.loc[len(attendance)] = [no, namee, '', '', status]
                attendance = attendance.drop_duplicates(subset=["Name"],
                                                        keep='first')
                #DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

        #attendance = attendance[attendance.Enrollment == 'person']

            indexNames = attendance[attendance['Name'] == 'Unknown'].index

            # Delete these row indexes from dataFrame
            attendance.drop(indexNames, inplace=True)
            print(attendance)
            attendance = attendance.drop_duplicates(subset=["Enrollment"],
                                                    keep='first')
            attendance.to_csv(fileName, index=True)
            #file_df=pd.read_excel(fileName)
            #attendance=file_df.drop_duplicates(subset=["Enrollment"], keep='first')
            #attendance.to_csv(fileName, index=True)

            ##Create table for Attendance
            date_for_DB = datetime.datetime.fromtimestamp(ts).strftime(
                '%Y_%m_%d')
            DB_Table_name = str(Batch + "_" + Subject + "_" + date_for_DB +
                                "_Time_" + Hour + "_" + Minute + "_" + Second)
            import pymysql.connections

            ###Connect to the database
            try:

                connection = pymysql.connect(host='localhost',
                                             user='******',
                                             password='',
                                             db='automatic')
                cursor = connection.cursor()
            except Exception as e:
                print(e)

            sql = "CREATE TABLE " + DB_Table_name + """
            (ID INT NOT NULL AUTO_INCREMENT,
             ENROLLMENT varchar(100) NOT NULL,
             NAME VARCHAR(50) NOT NULL,
             DATE VARCHAR(20) NOT NULL,
             TIME VARCHAR(20) NOT NULL,
             STATUS VARCHAR(20) NOT NULL,
                 PRIMARY KEY (ID)
                 );
            """
            ####Now enter attendance in Database
            insert_data = "INSERT INTO " + DB_Table_name + " (ID,ENROLLMENT,NAME,DATE,TIME,STATUS) VALUES (0, %s, %s, %s,%s,%s)"
            VALUES = (str(reg), str(Name), str(date), str(timeStamp),
                      str(status))
            try:
                cursor.execute(sql)  ##for create a table
                cursor.execute(insert_data,
                               VALUES)  ##For insert data into table
            except Exception as ex:
                print(ex)  #

            M = 'Attendance filled Successfully'
            Notifica.configure(text=M,
                               bg="Green",
                               fg="white",
                               width=33,
                               font=('times', 15, 'bold'))
            Notifica.place(x=20, y=250)

            VideoCapture.release()
            cv2.destroyAllWindows()

            import csv
            import tkinter
            root = tkinter.Tk()
            root.title("Attendance of " + Subject)
            root.configure(background='snow')
            cs = 'D:/project/dev/Attendace managemnt system/' + fileName
            with open(cs, newline="") as file:
                reader = csv.reader(file)
                r = 0

                for col in reader:
                    c = 0
                    for row in col:
                        # i've added some styling
                        label = tkinter.Label(root,
                                              width=8,
                                              height=1,
                                              fg="black",
                                              font=('times', 15, ' bold '),
                                              bg="lawn green",
                                              text=row,
                                              relief=tkinter.RIDGE)
                        label.grid(row=r, column=c)
                        c += 1
                    r += 1
            root.mainloop()
            print(attendance)
Exemplo n.º 4
0
if os.path.isfile(fname):
    with open(fname, 'rb') as f:
        (le, clf) = pickle.load(f)
else:
    print('\x1b[0;37;43m' + "Classifier '{}' does not exist".format(fname) +
          '\x1b[0m')
    quit()

for image_path in get_prediction_images(prediction_dir):
    # print colorful text with image name
    print('\x1b[6;30;42m' +
          "=====Predicting faces in '{}'=====".format(image_path) + '\x1b[0m')

    img = face_recognition_api.load_image_file(image_path)
    X_faces_loc = face_recognition_api.face_locations(img)

    faces_encodings = face_recognition_api.face_encodings(
        img, known_face_locations=X_faces_loc)
    print("Found {} faces in the image".format(len(faces_encodings)))

    closest_distances = clf.kneighbors(faces_encodings, n_neighbors=1)

    is_recognized = [
        closest_distances[0][i][0] <= 0.5 for i in range(len(X_faces_loc))
    ]

    # predict classes and cull classifications that are not with high confidence
    predictions = [(le.inverse_transform(int(pred)).title(), loc) if rec else
                   ("Unknown", loc)
                   for pred, loc, rec in zip(clf.predict(faces_encodings),
Exemplo n.º 5
0
    def get_frame(self):

        if self.isFace is False:
            # Load Face Recogniser classifier
            fname = 'classifier.pkl'
            if os.path.isfile(fname):
                with open(fname, 'rb') as f:
                    (le, clf) = pickle.load(f)
            else:
                print('\x1b[0;37;43m' +
                      "Classifier '{}' does not exist".format(fname) +
                      '\x1b[0m')
                quit()

            # Initialize some variables
            face_locations = []
            face_encodings = []
            face_names = []
            process_this_frame = True

            ret, frame = self.video.read()

            # Resize frame of video to 1/4 size for faster face recognition processing
            small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

            # Only process every other frame of video to save time
            if process_this_frame:
                # Find all the faces and face encodings in the current frame of video
                face_locations = face_recognition_api.face_locations(
                    small_frame)
                face_encodings = face_recognition_api.face_encodings(
                    small_frame, face_locations)

                face_names = []
                predictions = []
                if len(face_encodings) > 0:
                    closest_distances = clf.kneighbors(face_encodings,
                                                       n_neighbors=1)

                    is_recognized = [
                        closest_distances[0][i][0] <= 0.5
                        for i in range(len(face_locations))
                    ]

                    # predict classes and cull classifications that are not with high confidence
                    predictions = [
                        (le.inverse_transform(int(pred)).title(),
                         loc) if rec else ("Unknown", loc)
                        for pred, loc, rec in zip(clf.predict(
                            face_encodings), face_locations, is_recognized)
                    ]

                # # Predict the unknown faces in the video frame
                # for face_encoding in face_encodings:
                #     face_encoding = face_encoding.reshape(1, -1)
                #
                #     # predictions = clf.predict(face_encoding).ravel()
                #     # person = le.inverse_transform(int(predictions[0]))
                #
                #     predictions = clf.predict_proba(face_encoding).ravel()
                #     maxI = np.argmax(predictions)
                #     person = le.inverse_transform(maxI)
                #     confidence = predictions[maxI]
                #     print(person, confidence)
                #     if confidence < 0.7:
                #         person = 'Unknown'
                #
                #     face_names.append(person.title())

            process_this_frame = not process_this_frame

            # Display the results

            for name, (top, right, bottom, left) in predictions:
                # Scale back up face locations since the frame we detected in was scaled to 1/4 size
                top *= 4
                right *= 4
                bottom *= 4
                left *= 4

                # id = getFromDB(name)
                # cust_name = id[1] if id[1] is not None else name
                # cust_id = str(id[0]) if id[0] is not None else '1'

                # Draw a box around the face
                cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255),
                              2)

                # Draw a label with a name below the face
                cv2.rectangle(frame, (left, bottom - 35), (right, bottom),
                              (0, 0, 255), cv2.FILLED)
                font = cv2.FONT_HERSHEY_COMPLEX
                cv2.putText(frame, 'ID: ' + getFilePositionName(name),
                            (left + 6, bottom - 6), font, 1.0, (255, 255, 255),
                            1)
                cv2.putText(frame, 'Name: ' + name, (left + 6, bottom + 19),
                            font, 1.0, (255, 255, 255), 1)

                face_name = name

                self.count += 1

                if self.count > 10:
                    self.isFace = True

            ret, jpeg = cv2.imencode('.jpg', frame)
            return jpeg.tobytes()
        else:
            return self.gesture.get_frame()
Exemplo n.º 6
0
def main():

    fname = 'classifier.pkl'
    prediction_dir = './test-images'

    encoding_file_path = './encoded-images-data.csv'
    df = pd.read_csv(encoding_file_path)
    full_data = np.array(df.astype(float).values.tolist())

    # Extract features and labels
    # remove id column (0th column)
    X = np.array(full_data[:, 1:-1])
    y = np.array(full_data[:, -1:])

    if os.path.isfile(fname):
        with open(fname, 'rb') as f:
            (le, clf) = pickle.load(f)
    else:
        print('\x1b[0;37;43m' +
              "Classifier '{}' does not exist".format(fname) + '\x1b[0m')
        quit()

    for image_path in get_prediction_images(prediction_dir):
        # print colorful text with image name
        print('\x1b[6;30;42m' +
              "=====Predicting faces in '{}'=====".format(image_path) +
              '\x1b[0m')

        img = face_recognition_api.load_image_file(image_path)
        X_faces_loc = face_recognition_api.face_locations(img)

        faces_encodings = face_recognition_api.face_encodings(
            img, known_face_locations=X_faces_loc)
        print("Found {} faces in the image".format(len(faces_encodings)))

        closest_distances = clf.kneighbors(faces_encodings, n_neighbors=1)

        is_recognized = [
            closest_distances[0][i][0] <= 0.5 for i in range(len(X_faces_loc))
        ]

        #    store=[]
        #
        #    for pred, loc, rec in zip(clf.predict(faces_encodings), X_faces_loc, is_recognized):
        #        a=le.inverse_transform(int(pred)).title()
        #        b=loc
        #
        #        if rec:
        #            store.append([a,b])
        #        else:
        #            store.append("unknown", loc)

        # predict classes and cull classifications that are not with high confidence
        predictions = [(le.inverse_transform([int(pred)])[0], loc) if rec else
                       ("Unknown", loc)
                       for pred, loc, rec in zip(clf.predict(faces_encodings),
                                                 X_faces_loc, is_recognized)]

        print(predictions)

        # for face_encoding in faces_encodings:
        #     face_encoding = face_encoding.reshape(1, -1)
        #
        #     predictions = clf.predict_proba(face_encoding).ravel()
        #     maxI = np.argmax(predictions)
        #     person = le.inverse_transform(maxI)
        #     confidence = predictions[maxI]
        #     print("Predict {} with {:.2f} confidence.".format(person, confidence))

        print()