Exemplo n.º 1
0
 def test_06_unrecog_valid(self):
     """\
     Test face against a database that it does not exist in, and the graveful return.
     """
     recogniser_invalid = facerecognition.FaceRecognition(
         self.pickle_file_invalid)
     recognition_invalid = recogniser_invalid.recognise_face()
     self.assertEqual(recognition_invalid, None)
Exemplo n.º 2
0
 def test_05_recog_valid(self):
     """
     Test face against database it does exist in.
     """
     print("LOOK AT CAMERA for 30 seconds!")
     recogniser_valid = facerecognition.FaceRecognition(
         self.pickle_file_valid)
     recognition_valid = recogniser_valid.recognise_face()
     self.assertEqual(recognition_valid, self.face_valid)
Exemplo n.º 3
0
def main():
    camid = 1
    cap = cvs.VideoCapture(camid)
    facerecog = facerecognition.FaceRecognition("./models", 0.63)

    fcount = 0
    start = time.time()

    while True:
        sleep(30)
        img = cvs.read()

        if img is None:
            continue

        fcount = fcount + 1
        # global lbs
        lbs = 'Average FPS: ' + str(fcount / (time.time() - start))
        cvs.setLbs(lbs)

        if camid == 1:
            img = cv2.flip(img, 1)

        #img=cv2.resize(img,(112,112))
        image_char = img.astype(np.uint8).tostring()
        rets = facerecog.getfacepose(img.shape[0], img.shape[1], image_char)

        #print 'rets:',rets
        for ret in rets:
            #for ret in each:
            print('draw bounding box for the face')
            #cvs.infoshow('draw bounding box for the face')
            rect = ret['rect']
            #print rect
            mtcnn = ret['mtcnn']
            #print mtcnn
            for i in range(5):
                cvs.circle(img, (mtcnn[i], mtcnn[5 + i]), 2, (0, 0, 255), 2)
            keypoint = ret['keypoints']
            #print keypoint
            p1 = (int(rect[0]), int(rect[1]))
            p2 = (int(rect[0] + rect[2]), int(rect[1] + rect[3]))

            #draw_name(img, rect, ret['name'])
            cvs.rectangle(img, p1, p2, (0, 255, 0), 3, 1)
            for p in range(0, 106):
                #print p*2,' = ',keypoint[p*2]
                #print p*2+1,' = ',keypoint[p*2+1]
                k1 = int(rect[0] + keypoint[p * 2])
                k2 = int(rect[1] + keypoint[p * 2 + 1])
                cv2.circle(img, (k1, k2), 2, (253, 0, 0), 2)

        cvs.imshow(img)
Exemplo n.º 4
0
def main():
    cap = cvs.VideoCapture(1)
    facerecog = facerecognition.FaceRecognition("./models", 0.73)

    max_none = 0
    #facerecog = facerecognition.FaceRecognition("./models",0.6)
    while True:
        sleep(30)
        img = cvs.read()

        if img is None:
            continue
        #imshow(img)
        #continue

        #img=cv2.resize(img,(112,112))
        image_char = img.astype(np.uint8).tostring()

        msgType, msgName = cvs.getMsg()
        if msgName != '' and msgType == 'add_person':
            ret = facerecog.add_person(msgName, img.shape[0], img.shape[1],
                                       image_char)
            if ret == 0:
                print 'you add_person is success!'
                cvs.setMsg_status(1)
            else:
                print 'you add_person is failed!'
                cvs.setMsg_status(-1)
                #cv2.putText(img, ret['name'], (int(rect[0]), int(rect[1])-30),cv2.FONT_ITALIC, 2, (77, 255, 9), 2)

            continue  #

        rets = facerecog.recognize(img.shape[0], img.shape[1], image_char)

        print 'rets:', rets
        for ret in rets:
            #for ret in each:
            print 'draw bounding box for the face'
            rect = ret['rect']
            p1 = (int(rect[0]), int(rect[1]))
            p2 = (int(rect[0] + rect[2]), int(rect[1] + rect[2]))

            #draw_name(img, rect, ret['name'])
            cv2.rectangle(img, p1, p2, (0, 255, 0), 3, 1)
            cv2.putText(img, ret['name'], (int(rect[0]), int(rect[1]) - 30),
                        cv2.FONT_ITALIC, 2, (77, 255, 9), 2)
            cvs.infoshow('your name:' + ret['name'])

            #final = cv2.copyMakeBorder(img,0,0,64,64, cv2.BORDER_CONSTANT,value=[255,255,255])
            #final=cv2.flip(final,1)
        cvs.imshow(img)
Exemplo n.º 5
0
def process():

    cap = cvs.VideoCapture(1)

    facerecog = facerecognition.FaceRecognition("./models", 0.73)

    while True:
        sleep(30)
        img = cap.read()

        if img is None:
            continue

        image_char = img.astype(np.uint8).tostring()

        userId = cvs.getLbs()

        if userId != '':

            ret = facerecog.add_person(userId, img.shape[0], img.shape[1],
                                       image_char)
            if ret == 0:
                print('you add_person is success!')
                # cvs.setMsg_status(1)
            else:
                print('you add_person is failed!')

            userId = ''
            cvs.setLbs(userId)
            continue

        rets = facerecog.recognize(img.shape[0], img.shape[1], image_char)

        #print 'rets:',rets
        for ret in rets:
            #for ret in each:
            print('draw bounding box for the face')
            rect = ret['rect']
            p1 = (int(rect[0]), int(rect[1]))
            p2 = (int(rect[0] + rect[2]), int(rect[1] + rect[2]))

            #draw rect,names of faces
            cv2.rectangle(img, p1, p2, (0, 255, 0), 3, 1)
            cv2.putText(img, ret['name'], (int(rect[0]), int(rect[1]) - 30),
                        cv2.FONT_ITALIC, 2, (77, 255, 9), 2)

        cvs.imshow(img)
Exemplo n.º 6
0
def main():
    cap=cvs.VideoCapture(1)
    facerecog = facerecognition.FaceRecognition("./models", 0.63)

    max_none=0
    #facerecog = facerecognition.FaceRecognition("./models",0.6)
    while True:
        sleep(30)
        img =cvs.read()

        if img is None :
            continue
        #imshow(img)
        #continue
        img=cv2.flip(img,1)
        #img=cv2.resize(img,(112,112))
        image_char = img.astype(np.uint8).tostring()
        rets = facerecog.getfacepose(img.shape[0], img.shape[1], image_char)

        #print 'rets:',rets
        for ret  in  rets:
            #for ret in each:
            print 'draw bounding box for the face'
            rect = ret['rect']
            print rect
            mtcnn = ret['mtcnn']
            print mtcnn
            for i in range(5):
                cv2.circle(img,(mtcnn[i],mtcnn[5+i]),2,(0,0,255),2)
            keypoint=ret['keypoints']
            #print keypoint
            p1 = (int(rect[0]), int(rect[1]))
            p2 = (int(rect[0]+rect[2]), int(rect[1]+rect[3]))
            
            #draw_name(img, rect, ret['name'])
            cv2.rectangle(img, p1,p2, (0, 255, 0) , 3, 1)
            for p in range(0,106):
                print p*2,' = ',keypoint[p*2]
                print p*2+1,' = ',keypoint[p*2+1]
                k1=int(rect[0]+keypoint[p*2])
                k2=int(rect[1]+keypoint[p*2+1])
                cv2.circle(img,(k1,k2),2,(253,0,0),2)
            #cv2.putText(img, ret['name'], (20, 50),cv2.FONT_ITALIC, 2, (77, 255, 9), 2)
            #final = cv2.copyMakeBorder(img,0,0,64,64, cv2.BORDER_CONSTANT,value=[255,255,255])
            #final=cv2.flip(final,1)
            cvs.imshow(img)
Exemplo n.º 7
0
import numpy as np
import time, os
from multiprocessing import Process, Queue
import struct
import paho.mqtt.client as mqtt
import argparse
import SocketServer
import time
from PIL import Image

parser = argparse.ArgumentParser()
parser.add_argument('--svr',
                    type=str,
                    help='The ip for laptop training server')

facerecg = facerecognition.FaceRecognition("./models", 0.63)

HOST = ''
PORT = 21575
ADDR = (HOST, PORT)
bufSize = 4080


def recognize(rawData):
    img = Image.frombytes('RGB', (480, 272), rawData, 'raw', 'RGB;16')
    npimg = np.rot90(np.array(img), -1)

    image_char = npimg.astype(np.uint8).tostring()
    rets = facerecg.recognize(npimg.shape[0], npimg.shape[1], image_char)

    if rets is None or len(rets) == 0:
Exemplo n.º 8
0
import numpy as np
import facerecognition, cv2

class call_cpp(object):
    def __init__(self, name):
        self.itcom = mobilefacenet.communication(name)

    def run(self, img) :
        ret_list = self.itcom.test(img.shape[0], img.shape[1], image_char)
        gray = np.zeros([img.shape[0], img.shape[1]], np.ubyte)
        c = 0
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                gray[i][j] = ret_list[c]
                c += 1
        return gray

    def run_class(self):
        return self.itcom.ret_box_list()

if __name__ == '__main__':
    facerecog = facerecognition.FaceRecognition("../models/")

    img = cv2.imread('6.png')

    image_char = img.astype(np.uint8).tostring()
    #facerecog.recognize(img.shape[0], img.shape[1], image_char)
    facerecog.add_person("gf", img.shape[0], img.shape[1], image_char)