def test_phases_feed(self): score = tf.placeholder(tf.float32, []) loop = tools.Loop(None) loop.add_phase('phase_1', done=True, score=score, summary='', steps=1, report_every=1, log_every=None, checkpoint_every=None, feed={score: 1}) loop.add_phase('phase_2', done=True, score=score, summary='', steps=3, report_every=1, log_every=None, checkpoint_every=None, feed={score: 2}) loop.add_phase('phase_3', done=True, score=score, summary='', steps=2, report_every=1, log_every=None, checkpoint_every=None, feed={score: 3}) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) scores = list(loop.run(sess, saver=None, max_step=15)) self.assertAllEqual([1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2], scores)
def test_average_score_over_phases3(self): loop = tools.Loop(None) loop.add_phase('phase_1', done=True, score=1, summary='', steps=1, report_every=2) loop.add_phase('phase_2', done=True, score=2, summary='', steps=2, report_every=5) loop.add_phase('phase_2', done=True, score=3, summary='', steps=1, report_every=5) # Score: 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 1 2 2 1 2 # Report 1: x x x # Report 2: x x # Report 3: with self.test_session() as sess: sess.run(tf.global_variables_initializer()) scores = list(loop.run(sess, saver=None, max_step=17)) self.assertAllEqual([1, 2, 1], scores)
def test_not_done(self): step = tf.Variable(0, False, dtype=tf.int32, name='step') done = tf.equal((step + 1) % 2, 0) score = tf.cast(step, tf.float32) loop = tools.Loop(None, step) loop.add_phase('phase_1', done, score, summary='', steps=1, report_every=3) # Step: 0 1 2 3 4 5 6 7 8 9 # Score: 0 1 2 3 4 5 6 7 8 9 10 11 # Done: x x x x x x # Report: x x x x with self.test_session() as sess: sess.run(tf.global_variables_initializer()) scores = list(loop.run(sess, saver=None, max_step=12)) self.assertAllEqual([1, 4, 7, 10], scores)
def test_report_every_step(self): step = tf.Variable(0, trainable=False, dtype=tf.int32, name='step') loop = tools.Loop(None, step) loop.add_phase('phase_1', done=True, score=0, summary='', steps=1, report_every=3) # Step: 0 1 2 3 4 5 6 7 8 # Report: x x x with self.test_session() as sess: sess.run(tf.global_variables_initializer()) scores = loop.run(sess, saver=None, max_step=9) next(scores) self.assertEqual(3, sess.run(step)) next(scores) self.assertEqual(6, sess.run(step)) next(scores) self.assertEqual(9, sess.run(step))
def test_not_done_batch(self): step = tf.Variable(0, False, dtype=tf.int32, name='step') done = tf.equal([step % 3, step % 4], 0) score = tf.cast([step, step**2], tf.float32) loop = tools.Loop(None, step) loop.add_phase('phase_1', done, score, summary='', steps=1, report_every=8) # Step: 0 2 4 6 8 # Score 1: 0 2 4 6 # Done 1: x x # Score 2: 0 4 16 32 # Done 2: x x # Report : x with self.test_session() as sess: sess.run(tf.global_variables_initializer()) scores = list(loop.run(sess, saver=None, max_step=8)) self.assertEqual(8, sess.run(step)) self.assertAllEqual([(0 + 0 + 16 + 6) / 4], scores)