Exemplo n.º 1
0
    def test_round_trip_smoke(self):
        original = GroupMetricSet()

        original.model_type = GroupMetricSet.BINARY_CLASSIFICATION
        original.y_true = [0, 1, 0, 0]
        original.y_pred = [1, 1, 1, 0]
        original.groups = [0, 1, 2, 0]
        original.group_title = 123

        # Some wholly synthetic metrics
        firstMetric = GroupMetricResult()
        firstMetric.overall = 0.2
        firstMetric.by_group[0] = 0.25
        firstMetric.by_group[1] = 0.5
        firstMetric.by_group[2] = 0.2
        secondMetric = GroupMetricResult()
        secondMetric.overall = 0.6
        secondMetric.by_group[0] = 0.75
        secondMetric.by_group[1] = 0.25
        secondMetric.by_group[2] = 0.25
        metric_dict = {
            GroupMetricSet.GROUP_ACCURACY_SCORE: firstMetric,
            GroupMetricSet.GROUP_MISS_RATE: secondMetric
        }
        original.metrics = metric_dict
        original.group_names = ['First', 'Second', 'Something else']

        intermediate_dict = original.to_dict()

        result = GroupMetricSet.from_dict(intermediate_dict)

        assert original == result
Exemplo n.º 2
0
    def test_group_names_do_not_match_groups(self):
        target = GroupMetricSet()

        target.model_type = GroupMetricSet.BINARY_CLASSIFICATION
        target.y_true = [0, 1, 0, 0]
        target.y_pred = [1, 1, 1, 0]
        target.groups = [0, 1, 1, 0]

        # Some wholly synthetic metrics
        firstMetric = GroupMetricResult()
        firstMetric.overall = 0.2
        firstMetric.by_group[0] = 0.3
        firstMetric.by_group[1] = 0.4
        secondMetric = GroupMetricResult()
        secondMetric.overall = 0.6
        secondMetric.by_group[0] = 0.7
        secondMetric.by_group[1] = 0.8
        metric_dict = {
            GroupMetricSet.GROUP_ACCURACY_SCORE: firstMetric,
            GroupMetricSet.GROUP_MISS_RATE: secondMetric
        }

        target.metrics = metric_dict

        target.group_names = ['First']
        target.group_title = "Some string"
        with pytest.raises(ValueError) as exception_context:
            target.check_consistency()
        expected = "Count of group_names not the same as the number of unique groups"
        assert exception_context.value.args[0] == expected
Exemplo n.º 3
0
    def test_length_mismatch_groups(self):
        target = GroupMetricSet()
        target.y_true = [0, 1, 0, 1]
        target.y_pred = [0, 1, 1, 0]
        target.groups = [0, 1, 1]

        with pytest.raises(ValueError) as exception_context:
            target.check_consistency()
        assert exception_context.value.args[
            0] == "Lengths of y_true, y_pred and groups must match"
Exemplo n.º 4
0
    def test_metric_has_bad_groups(self):
        target = GroupMetricSet()
        target.y_true = [0, 1, 1, 1, 0]
        target.y_pred = [1, 1, 1, 0, 0]
        target.groups = [0, 1, 0, 1, 1]
        bad_metric = GroupMetricResult()
        bad_metric.by_group[0] = 0.1
        metric_dict = {'bad_metric': bad_metric}
        target.metrics = metric_dict

        with pytest.raises(ValueError) as exception_context:
            target.check_consistency()
        expected = "The groups for metric bad_metric do not match the groups property"
        assert exception_context.value.args[0] == expected
Exemplo n.º 5
0
    def test_to_dict_smoke(self):
        target = GroupMetricSet()

        target.model_type = GroupMetricSet.BINARY_CLASSIFICATION
        target.y_true = [0, 1, 0, 0]
        target.y_pred = [1, 1, 1, 0]
        target.groups = [0, 1, 1, 0]

        # Some wholly synthetic metrics
        firstMetric = GroupMetricResult()
        firstMetric.overall = 0.2
        firstMetric.by_group[0] = 0.3
        firstMetric.by_group[1] = 0.4
        secondMetric = GroupMetricResult()
        secondMetric.overall = 0.6
        secondMetric.by_group[0] = 0.7
        secondMetric.by_group[1] = 0.8
        metric_dict = {
            GroupMetricSet.GROUP_ACCURACY_SCORE: firstMetric,
            GroupMetricSet.GROUP_MISS_RATE: secondMetric
        }

        target.metrics = metric_dict

        target.group_names = ['First', 'Second']
        target.group_title = "Some string"

        result = target.to_dict()

        assert result['predictionType'] == 'binaryClassification'
        assert np.array_equal(target.y_true, result['trueY'])
        assert len(result['predictedYs']) == 1
        assert np.array_equal(result['predictedYs'][0], target.y_pred)

        assert len(result['precomputedMetrics']) == 1
        assert len(result['precomputedMetrics'][0]) == 1
        rmd = result['precomputedMetrics'][0][0]
        assert len(rmd) == 2
        assert rmd['accuracy_score']['global'] == 0.2
        assert rmd['accuracy_score']['bins'][0] == 0.3
        assert rmd['accuracy_score']['bins'][1] == 0.4
        assert rmd['miss_rate']['global'] == 0.6
        assert rmd['miss_rate']['bins'][0] == 0.7
        assert rmd['miss_rate']['bins'][1] == 0.8
        assert result['precomputedBins'][0]['featureBinName'] == "Some string"
        assert np.array_equal(result['precomputedBins'][0]['binLabels'],
                              ['First', 'Second'])
Exemplo n.º 6
0
 def test_y_pred(self):
     target = GroupMetricSet()
     target.y_pred = [1, 2]
     assert isinstance(target.y_pred, np.ndarray)
     assert np.array_equal(target.y_pred, [1, 2])