Exemplo n.º 1
0
 def generate_batched_itr(self,
                          data_itr,
                          beam_size=None,
                          cuda=False,
                          timer=None):
     """Iterate over a batched dataset and yield individual translations.
     Args:
         cuda (bool, optional): use GPU for generation
         timer (StopwatchMeter, optional): time generations
     """
     for sample in data_itr:
         s = utils.move_to_cuda(sample) if cuda else sample
         if "net_input" not in s:
             continue
         input = s["net_input"]
         # model.forward normally channels prev_output_tokens into the decoder
         # separately, but SequenceGenerator directly calls model.encoder
         encoder_input = {
             k: v
             for k, v in input.items() if k != "prev_output_tokens"
         }
         if timer is not None:
             timer.start()
         with torch.no_grad():
             hypos = self.generate(encoder_input)
         if timer is not None:
             timer.stop(sum(len(h[0]["tokens"]) for h in hypos))
         for i, id in enumerate(s["id"].data):
             # remove padding
             src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad)
             ref = (utils.strip_pad(s["target"].data[i, :], self.pad)
                    if s["target"] is not None else None)
             yield id, src, ref, hypos[i]
Exemplo n.º 2
0
    def generate_batched_itr(
        self,
        data_itr,
        maxlen_a=None,
        maxlen_b=None,
        cuda=False,
        timer=None,
        prefix_size=0,
    ):
        """Iterate over a batched dataset and yield individual translations.

        Args:
            maxlen_a/b: generate sequences of maximum length ax + b,
                where x is the source sentence length.
            cuda: use GPU for generation
            timer: StopwatchMeter for timing generations.
        """

        for sample in data_itr:
            if "net_input" not in sample:
                continue
            if timer is not None:
                timer.start()
            with torch.no_grad():
                hypos = self.generate(
                    self.models,
                    sample,
                    prefix_tokens=sample["target"][:, :prefix_size]
                    if prefix_size > 0
                    else None,
                )
            if timer is not None:
                timer.stop(sample["ntokens"])
            for i, id in enumerate(sample["id"]):
                # remove padding
                src = utils.strip_pad(sample["net_input"]["src_tokens"][i, :], self.pad)
                ref = utils.strip_pad(sample["target"][i, :], self.pad)
                yield id, src, ref, hypos[i]
Exemplo n.º 3
0
    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """

        assert (hasattr(model.decoder, "adaptive_softmax")
                and model.decoder.adaptive_softmax is not None)
        adaptive_softmax = model.decoder.adaptive_softmax

        net_output = model(**sample["net_input"])
        orig_target = model.get_targets(sample, net_output)

        nsentences = orig_target.size(0)
        orig_target = orig_target.view(-1)

        bsz = orig_target.size(0)

        logits, target = adaptive_softmax(net_output[0], orig_target)
        assert len(target) == len(logits)

        loss = net_output[0].new(1 if reduce else bsz).zero_()

        for i in range(len(target)):
            if target[i] is not None:
                assert target[i].min() >= 0 and target[i].max(
                ) <= logits[i].size(1)
                loss += F.cross_entropy(
                    logits[i],
                    target[i],
                    ignore_index=self.padding_idx,
                    reduction="sum" if reduce else "none",
                )

        orig = utils.strip_pad(orig_target, self.padding_idx)
        ntokens = orig.numel()
        sample_size = sample["target"].size(
            0) if self.sentence_avg else ntokens
        logging_output = {
            "loss": loss.data,
            "ntokens": ntokens,
            "nsentences": nsentences,
            "sample_size": sample_size,
        }
        return loss, sample_size, logging_output
Exemplo n.º 4
0
    def _inference_with_bleu(self, generator, sample, model):
        import sacrebleu

        def decode(toks, escape_unk=False):
            s = self.tgt_dict.string(
                toks.int().cpu(),
                self.cfg.eval_bleu_remove_bpe,
                # The default unknown string in fairseq is `<unk>`, but
                # this is tokenized by sacrebleu as `< unk >`, inflating
                # BLEU scores. Instead, we use a somewhat more verbose
                # alternative that is unlikely to appear in the real
                # reference, but doesn't get split into multiple tokens.
                unk_string=("UNKNOWNTOKENINREF"
                            if escape_unk else "UNKNOWNTOKENINHYP"),
            )
            if self.tokenizer:
                s = self.tokenizer.decode(s)
            return s

        gen_out = self.inference_step(generator, [model],
                                      sample,
                                      prefix_tokens=None)
        hyps, refs = [], []
        for i in range(len(gen_out)):
            hyps.append(decode(gen_out[i][0]["tokens"]))
            refs.append(
                decode(
                    utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
                    escape_unk=True,  # don't count <unk> as matches to the hypo
                ))
        if self.cfg.eval_bleu_print_samples:
            logger.info("example hypothesis: " + hyps[0])
            logger.info("example reference: " + refs[0])
        if self.cfg.eval_tokenized_bleu:
            return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none")
        else:
            return sacrebleu.corpus_bleu(hyps, [refs])
Exemplo n.º 5
0
def _main(cfg: DictConfig, output_file):
    logging.basicConfig(
        format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=os.environ.get("LOGLEVEL", "INFO").upper(),
        stream=output_file,
    )
    logger = logging.getLogger("fairseq_cli.generate")

    utils.import_user_module(cfg.common)

    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.max_tokens = 12000
    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Load dataset splits
    task = tasks.setup_task(cfg.task)

    # Set dictionaries
    try:
        src_dict = getattr(task, "source_dictionary", None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    overrides = ast.literal_eval(cfg.common_eval.model_overrides)

    # START ba_st_ch code
    eval_file_name, checkpoint = get_evaluation_file_name(
        str(cfg.common_eval.path))
    print(eval_file_name)
    eval_manifest = {c: [] for c in MANIFEST_COLUMNS}
    eval_file_name = resource_path + eval_file_name
    # END ba_st_ch code
    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, saved_cfg = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
    task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)

    if cfg.generation.lm_path is not None:
        overrides["data"] = cfg.task.data

        try:
            lms, _ = checkpoint_utils.load_model_ensemble(
                [cfg.generation.lm_path], arg_overrides=overrides, task=None)
        except:
            logger.warning(
                f"Failed to load language model! Please make sure that the language model dict is the same "
                f"as target dict and is located in the data dir ({cfg.task.data})"
            )
            raise

        assert len(lms) == 1
    else:
        lms = [None]

    # Optimize ensemble for generation
    for model in chain(models, lms):
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(cfg.dataset.gen_subset),
        max_tokens=cfg.dataset.max_tokens,
        max_sentences=cfg.dataset.batch_size,
        max_positions=utils.resolve_max_positions(
            task.max_positions(), *[m.max_positions() for m in models]),
        ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
        seed=cfg.common.seed,
        num_shards=cfg.distributed_training.distributed_world_size,
        shard_id=cfg.distributed_training.distributed_rank,
        num_workers=cfg.dataset.num_workers,
        data_buffer_size=cfg.dataset.data_buffer_size,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_interval=cfg.common.log_interval,
        default_log_format=("tqdm"
                            if not cfg.common.no_progress_bar else "simple"),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()

    extra_gen_cls_kwargs = {
        "lm_model": lms[0],
        "lm_weight": cfg.generation.lm_weight
    }
    generator = task.build_generator(models,
                                     cfg.generation,
                                     extra_gen_cls_kwargs=extra_gen_cls_kwargs)

    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(cfg.tokenizer)
    bpe = task.build_bpe(cfg.bpe)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    scorer = scoring.build_scorer(cfg.scoring, tgt_dict)

    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if "net_input" not in sample:
            continue

        prefix_tokens = None
        if cfg.generation.prefix_size > 0:
            prefix_tokens = sample["target"][:, :cfg.generation.prefix_size]

        constraints = None
        if "constraints" in sample:
            constraints = sample["constraints"]

        gen_timer.start()
        hypos = task.inference_step(
            generator,
            models,
            sample,
            prefix_tokens=prefix_tokens,
            constraints=constraints,
        )
        num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample["id"].tolist()):
            has_target = sample["target"] is not None

            # Remove padding
            if "src_tokens" in sample["net_input"]:
                src_tokens = utils.strip_pad(
                    sample["net_input"]["src_tokens"][i, :], tgt_dict.pad())
            else:
                src_tokens = None

            target_tokens = None
            if has_target:
                target_tokens = (utils.strip_pad(sample["target"][i, :],
                                                 tgt_dict.pad()).int().cpu())

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    cfg.dataset.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    cfg.dataset.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens,
                                              cfg.common_eval.post_process)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(
                        target_tokens,
                        cfg.common_eval.post_process,
                        escape_unk=True,
                        extra_symbols_to_ignore=
                        get_symbols_to_strip_from_output(generator),
                    )
            # START ba_st_ch code
            print("-------------")
            test_dataset = corpus_path + str(cfg.dataset.gen_subset) + ".tsv"
            df = pd.read_table(test_dataset)
            id = df.loc[[sample_id], ["id"]]
            print(id)
            id = str(id).partition('\n')[2]
            print("id: ", id)
            print("-------------")
            # END ba_st_ch code
            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not cfg.common_eval.quiet:
                if src_dict is not None:
                    print("S-{}\t{}".format(sample_id, src_str),
                          file=output_file)
                if has_target:
                    print("T-{}\t{}".format(sample_id, target_str),
                          file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:cfg.generation.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo["tokens"].int().cpu(),
                    src_str=src_str,
                    alignment=hypo["alignment"],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=cfg.common_eval.post_process,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                        generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                # START ba_st_ch code
                eval_manifest["id"].append(id)
                eval_manifest["target_txt"].append(target_str)
                eval_manifest["prediction"].append(detok_hypo_str)
                # END ba_st_ch code
                if not cfg.common_eval.quiet:
                    score = hypo["score"] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print(
                        "H-{}\t{}\t{}".format(sample_id, score, hypo_str),
                        file=output_file,
                    )
                    # detokenized hypothesis
                    print(
                        "D-{}\t{}\t{}".format(sample_id, score,
                                              detok_hypo_str),
                        file=output_file,
                    )
                    print(
                        "P-{}\t{}".format(
                            sample_id,
                            " ".join(
                                map(
                                    lambda x: "{:.4f}".format(x),
                                    # convert from base e to base 2
                                    hypo["positional_scores"].div_(math.log(2)
                                                                   ).tolist(),
                                )),
                        ),
                        file=output_file,
                    )

                    if cfg.generation.print_alignment == "hard":
                        print(
                            "A-{}\t{}".format(
                                sample_id,
                                " ".join([
                                    "{}-{}".format(src_idx, tgt_idx)
                                    for src_idx, tgt_idx in alignment
                                ]),
                            ),
                            file=output_file,
                        )
                    if cfg.generation.print_alignment == "soft":
                        print(
                            "A-{}\t{}".format(
                                sample_id,
                                " ".join([
                                    ",".join(src_probs)
                                    for src_probs in alignment
                                ]),
                            ),
                            file=output_file,
                        )

                    if cfg.generation.print_step:
                        print(
                            "I-{}\t{}".format(sample_id, hypo["steps"]),
                            file=output_file,
                        )

                    if cfg.generation.retain_iter_history:
                        for step, h in enumerate(hypo["history"]):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h["tokens"].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print(
                                "E-{}_{}\t{}".format(sample_id, step, h_str),
                                file=output_file,
                            )

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or cfg.common_eval.post_process is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(
                            target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(
                            detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, "add_string"):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({"wps": round(wps_meter.avg)})
        num_sentences += (sample["nsentences"]
                          if "nsentences" in sample else sample["id"].numel())

    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info(
        "Translated {:,} sentences ({:,} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)"
        .format(
            num_sentences,
            gen_timer.n,
            gen_timer.sum,
            num_sentences / gen_timer.sum,
            1.0 / gen_timer.avg,
        ))
    if has_target:
        if cfg.bpe and not cfg.generation.sacrebleu:
            if cfg.common_eval.post_process:
                logger.warning(
                    "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
                )
            else:
                logger.warning(
                    "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization"
                )
        # use print to be consistent with other main outputs: S-, H-, T-, D- and so on
        print(
            "Generate {} with beam={}: {}".format(cfg.dataset.gen_subset,
                                                  cfg.generation.beam,
                                                  scorer.result_string()),
            file=output_file,
        )
    # START ba_st_ch code
    bleu_score = scorer.result_string().rsplit(' = ')[1].split(" ")[0]
    # print(bleu_score)
    # print(float(bleu_score) / 2)
    f.write(checkpoint + ";" + bleu_score + '\n')
    generate_manifest(eval_manifest, eval_file_name)
    # END ba_st_ch code
    return scorer
Exemplo n.º 6
0
    def generate(self, models, sample, **kwargs):
        """Score a batch of translations."""
        net_input = sample["net_input"]

        def batch_for_softmax(dec_out, target):
            # assumes decoder_out[0] is the only thing needed (may not be correct for future models!)
            first, rest = dec_out[0], dec_out[1:]
            bsz, tsz, dim = first.shape
            if bsz * tsz < self.softmax_batch:
                yield dec_out, target, True
            else:
                flat = first.contiguous().view(1, -1, dim)
                flat_tgt = target.contiguous().view(flat.shape[:-1])
                s = 0
                while s < flat.size(1):
                    e = s + self.softmax_batch
                    yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False
                    s = e

        def gather_target_probs(probs, target):
            probs = probs.gather(
                dim=2,
                index=target.unsqueeze(-1),
            )
            return probs

        orig_target = sample["target"]

        # compute scores for each model in the ensemble
        avg_probs = None
        avg_attn = None
        for model in models:
            model.eval()
            decoder_out = model(**net_input)
            attn = decoder_out[1] if len(decoder_out) > 1 else None
            if type(attn) is dict:
                attn = attn.get("attn", None)

            batched = batch_for_softmax(decoder_out, orig_target)
            probs, idx = None, 0
            for bd, tgt, is_single in batched:
                sample["target"] = tgt
                curr_prob = model.get_normalized_probs(
                    bd, log_probs=len(models) == 1, sample=sample
                ).data
                if is_single:
                    probs = gather_target_probs(curr_prob, orig_target)
                else:
                    if probs is None:
                        probs = curr_prob.new(orig_target.numel())
                    step = curr_prob.size(0) * curr_prob.size(1)
                    end = step + idx
                    tgt_probs = gather_target_probs(
                        curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt
                    )
                    probs[idx:end] = tgt_probs.view(-1)
                    idx = end
                sample["target"] = orig_target

            probs = probs.view(sample["target"].shape)

            if avg_probs is None:
                avg_probs = probs
            else:
                avg_probs.add_(probs)
            if attn is not None:
                if torch.is_tensor(attn):
                    attn = attn.data
                else:
                    attn = attn[0]
                if avg_attn is None:
                    avg_attn = attn
                else:
                    avg_attn.add_(attn)
        if len(models) > 1:
            avg_probs.div_(len(models))
            avg_probs.log_()
            if avg_attn is not None:
                avg_attn.div_(len(models))

        bsz = avg_probs.size(0)
        hypos = []
        start_idxs = sample["start_indices"] if "start_indices" in sample else [0] * bsz
        for i in range(bsz):
            # remove padding from ref
            ref = (
                utils.strip_pad(sample["target"][i, start_idxs[i] :], self.pad)
                if sample["target"] is not None
                else None
            )
            tgt_len = ref.numel()
            avg_probs_i = avg_probs[i][start_idxs[i] : start_idxs[i] + tgt_len]
            score_i = avg_probs_i.sum() / tgt_len
            if avg_attn is not None:
                avg_attn_i = avg_attn[i]
                if self.compute_alignment:
                    alignment = utils.extract_hard_alignment(
                        avg_attn_i,
                        sample["net_input"]["src_tokens"][i],
                        sample["target"][i],
                        self.pad,
                        self.eos,
                    )
                else:
                    alignment = None
            else:
                avg_attn_i = alignment = None
            hypos.append(
                [
                    {
                        "tokens": ref,
                        "score": score_i,
                        "attention": avg_attn_i,
                        "alignment": alignment,
                        "positional_scores": avg_probs_i,
                    }
                ]
            )
        return hypos
Exemplo n.º 7
0
    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.
        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        lm_logits, output_metadata = model(**sample["net_input"])

        # reshape lm_logits from (N,T,C) to (N*T,C)
        lm_logits = lm_logits.view(-1, lm_logits.size(-1))
        lm_targets = sample["lm_target"].view(-1)
        lm_loss = compute_cross_entropy_loss(lm_logits, lm_targets,
                                             self.padding_idx)

        # compute the number of tokens for which loss is computed. This is used
        # to normalize the loss
        ntokens = utils.strip_pad(lm_targets, self.padding_idx).numel()
        loss = lm_loss / ntokens
        nsentences = sample["nsentences"]
        # nsentences = 0

        # Compute sentence loss if masked_lm_only is False
        sentence_loss = None
        if not self.masked_lm_only:
            sentence_logits = output_metadata["sentence_logits"]
            sentence_targets = sample["sentence_target"].view(-1)
            # This needs to be recomputed due to some differences between
            # TokenBlock and BlockPair dataset. This can be resolved with a
            # refactor of BERTModel which we will do in the future.
            # TODO: Remove this after refactor of BERTModel
            nsentences = sentence_targets.size(0)

            # Check for logits being none which can happen when remove_heads
            # is set to true in the BERT model. Ideally we should set
            # masked_lm_only to true in this case, but that requires some
            # refactor in the BERT model.
            if sentence_logits is not None:
                sentence_loss = compute_cross_entropy_loss(
                    sentence_logits, sentence_targets)

                loss += self.nsp_loss_weight * (sentence_loss / nsentences)

        # NOTE: as we are summing up per token mlm loss and per sentence nsp loss
        # we don't need to use sample_size as denominator for the gradient
        # here sample_size is just used for logging
        sample_size = 1
        logging_output = {
            "loss":
            utils.item(loss.data) if reduce else loss.data,
            "lm_loss":
            utils.item(lm_loss.data) if reduce else lm_loss.data,
            # sentence loss is not always computed
            "sentence_loss":
            ((utils.item(sentence_loss.data) if reduce else sentence_loss.data)
             if sentence_loss is not None else 0.0),
            "ntokens":
            ntokens,
            "nsentences":
            nsentences,
            "sample_size":
            sample_size,
        }
        return loss, sample_size, logging_output
Exemplo n.º 8
0
def main(cfg: FairseqConfig):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(cfg.common)

    if cfg.interactive.buffer_size < 1:
        cfg.interactive.buffer_size = 1
    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.batch_size = 1

    assert (
        not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
    ), "--sampling requires --nbest to be equal to --beam"
    assert (
        not cfg.dataset.batch_size
        or cfg.dataset.batch_size <= cfg.interactive.buffer_size
    ), "--batch-size cannot be larger than --buffer-size"

    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(cfg.task)

    # Load ensemble
    overrides = ast.literal_eval(cfg.common_eval.model_overrides)
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Initialize generator
    generator = task.build_generator(models, cfg.generation)

    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(cfg.tokenizer)
    bpe = task.build_bpe(cfg.bpe)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models]
    )

    if cfg.generation.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if cfg.interactive.buffer_size > 1:
        logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size)
    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info("Type the input sentence and press return:")
    start_id = 0
    for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size):
        results = []
        for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                "net_input": {
                    "src_tokens": src_tokens,
                    "src_lengths": src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(
                generator, models, sample, constraints=constraints
            )
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if cfg.generation.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append(
                    (
                        start_id + id,
                        src_tokens_i,
                        hypos,
                        {
                            "constraints": constraints,
                            "time": translate_time / len(translations),
                        },
                    )
                )

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
            src_str = ''
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
                print("S-{}\t{}".format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print(
                        "C-{}\t{}".format(
                            id_, tgt_dict.string(constraint, cfg.common_eval.post_process)
                        )
                    )

            # Process top predictions
            for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo["tokens"].int().cpu(),
                    src_str=src_str,
                    alignment=hypo["alignment"],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=cfg.common_eval.post_process,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo["score"] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print("H-{}\t{}\t{}".format(id_, score, hypo_str))
                # detokenized hypothesis
                print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str))
                print(
                    "P-{}\t{}".format(
                        id_,
                        " ".join(
                            map(
                                lambda x: "{:.4f}".format(x),
                                # convert from base e to base 2
                                hypo["positional_scores"].div_(math.log(2)).tolist(),
                            )
                        ),
                    )
                )
                if cfg.generation.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment]
                    )
                    print("A-{}\t{}".format(id_, alignment_str))

        # update running id_ counter
        start_id += len(inputs)

    logger.info(
        "Total time: {:.3f} seconds; translation time: {:.3f}".format(
            time.time() - start_time, total_translate_time
        )
    )