Exemplo n.º 1
0
    def test_ratio(self):
        """ Evaluation of orthogonal polynomial ratios.  """

        alpha = -1. + 10*np.random.rand(1)[0]
        beta =  -1. + 10*np.random.rand(1)[0]
        J = JacobiPolynomials(alpha=alpha,beta=beta)

        N = int(np.ceil(60*np.random.rand(1)))
        x = (1 + 5*np.random.rand(1)) * (1 + np.random.rand(50)) 
        y = (1 + 5*np.random.rand(1)) * (-1 - np.random.rand(50)) 
        x = np.concatenate([x, y])

        P = J.eval(x, range(N+1))
        rdirect = np.zeros([x.size, N+1])
        rdirect[:,0] = P[:,0]
        rdirect[:,1:] = P[:,1:]/P[:,:-1]

        r = J.r_eval(x, range(N+1))

        delta = 1e-6
        errs = np.abs(r-rdirect)
        i,j = np.where(errs > delta)[:2]
        if i.size > 0:
            errstr = 'Failed for alpha={0:1.3f}, beta={1:1.3f}, n={2:d}, x={3:1.6f}'.format(alpha, beta, j[0], x[i[0]])
        else:
            errstr = ''

        self.assertAlmostEqual(np.linalg.norm(errs, ord=np.inf), 0, delta=delta, msg=errstr)
Exemplo n.º 2
0
    def test_gq(self):
        """Gaussian quadrature integration accuracy"""

        alpha = -1. + 10*np.random.rand(1)[0]
        beta =  -1. + 10*np.random.rand(1)[0]

        J = JacobiPolynomials(alpha=alpha,beta=beta)
        N = int(np.ceil(60*np.random.rand(1)))

        x,w = J.gauss_quadrature(N)
        w /= w.sum()    # Force probability measure

        V = J.eval(x, range(2*N))

        integrals = np.dot(w, V)
        integrals[0] -= V[0,0] # Exact value

        self.assertAlmostEqual(np.linalg.norm(integrals,ord=np.inf), 0.)
Exemplo n.º 3
0
    def test_idist_legendre(self):
        """Evaluation of Legendre induced distribution function."""

        J = JacobiPolynomials(alpha=0., beta=0.)

        n = int(np.ceil(25*np.random.rand(1))[0])
        M = 25
        x = -1. + 2*np.random.rand(M)

        # JacobiPolynomials method
        F1 = J.idist(x, n)

        y, w = J.gauss_quadrature(n+1)

        # Exact: integrate density
        F2 = np.zeros(F1.shape)
        for xind, xval in enumerate(x):
            yquad = (y+1)/2.*(xval+1) - 1.
            F2[xind] = np.dot(w,J.eval(yquad, n)**2) * (xval+1)/2

        self.assertAlmostEqual(np.linalg.norm(F1-F2,ord=np.inf), 0.)
Exemplo n.º 4
0
    def test_fidist_jacobi(self):
        """Fast induced sampling routine for Jacobi polynomials."""

        alpha = np.random.random()*11 - 1.
        beta =  np.random.random()*11 - 1.

        nmax = 4
        M = 10
        u = np.random.random(M)

        J = JacobiPolynomials(alpha=alpha,beta=beta)

        delta = 1e-3
        for n in range(nmax)[::-1]:
            x0 = J.idistinv(u, n)
            x1 = J.fidistinv(u, n)

            ind = np.where(np.abs(x0-x1) > delta)[:2][0]
            if ind.size > 0:
                errstr = 'Failed for alpha={0:1.3f}, beta={1:1.3f}, n={2:d}, u={3:1.6f}'.format(alpha, beta, n, u[ind[0]])
            else:
                errstr = ''

            self.assertAlmostEqual(np.linalg.norm(x0-x1,ord=np.inf), 0., delta=delta, msg=errstr)

        n = np.array(np.round(np.random.random(M)), dtype=int)
        x0 = J.idistinv(u, n)
        x1 = J.fidistinv(u, n)
        ind = np.where(np.abs(x0-x1) > delta)[:2][0]
        if ind.size > 0:
            errstr = 'Failed for alpha={0:1.3f}, beta={1:1.3f}, n={2:d}, u={3:1.6f}'.format(alpha, beta, n[ind[0]], u[ind[0]])
        else:
            errstr = ''

        self.assertAlmostEqual(np.linalg.norm(x0-x1,ord=np.inf), 0., delta=delta, msg=errstr)
Exemplo n.º 5
0
    def __init__(self, alpha=None, beta=None, mean=None, stdev=None, dim=None, domain=None):

        # Convert mean/stdev inputs to alpha/beta
        if mean is not None and stdev is not None:
            if alpha is not None or beta is not None:
                raise ValueError('Cannot simultaneously specify alpha/beta parameters and mean/stdev parameters')

            alpha, beta = self._convert_meanstdev_to_alphabeta(mean, stdev)

        alpha, beta = self._convert_alphabeta_to_iterable(alpha, beta)

        # Sets self.dim, self.alpha, self.beta, self.domain
        self._detect_dimension(alpha, beta, dim, domain)

        for qd in range(self.dim):
            assert self.alpha[qd]>0 and self.beta[qd]>0, "Parameter vectors alpha and beta must have strictly positive components"
        assert self.dim > 0, "Dimension must be positive"
        assert self.domain.shape == (2, self.dim)

        ## Construct affine map transformations

        # Standard domain is [0,1]^dim
        self.standard_domain = np.ones([2, self.dim])
        self.standard_domain[0,:] = 0.

        # Low-level routines use Jacobi Polynomials, which operate on [-1,1]
        # instead of the standard Beta domain of [0,1]
        self.jacobi_domain = np.ones([2, self.dim])
        self.jacobi_domain[0,:] = -1.
        self.transform_standard_dist_to_poly = AffineTransform(domain=self.standard_domain, image=self.jacobi_domain)

        self.transform_to_standard = AffineTransform(domain=self.domain, image=self.standard_domain)

        ## Construct 1D polynomial families
        Js = []
        for qd in range(self.dim):
            Js.append(JacobiPolynomials(alpha=self.beta[qd]-1., beta=self.alpha[qd]-1.))
        self.polys = TensorialPolynomials(polys1d=Js)

        self.indices = None
Exemplo n.º 6
0
    Returns
    ------
    N samples iid from a discrete probability measure
    """

    p = probs[:] / sum(probs[:])

    j = np.digitize(np.random.random(N), np.cumsum(p), right=False)

    assert probs.size == states.size

    x = states[j]

    return x


if __name__ == "__main__":

    from families import JacobiPolynomials

    alph = -0.8
    bet = np.sqrt(101)
    states = np.linspace(-1, 1, 10)
    n = 4
    J = JacobiPolynomials(alpha=alph, beta=bet)

    probs = J.idist(states, n, M=10)

    N = 5
    print(discrete_sampling(N, probs, states))
Exemplo n.º 7
0
    def christoffel_function(self, x, k):
        """
        Computes the normalized (inverse) Christoffel function lambda, defined as

          lambda**2 = k / sum(p**2, axi=1),

        where p is a matrix containing evaluations of an orthonormal
        polynomial family up to degree k-1, defined by the recurrence
        coefficients ab.
        """

        assert k > 0

        p = self.eval(x, range(k))
        return np.sqrt(float(k) / np.sum(p**2, axis=1))


if __name__ == "__main__":
    from matplotlib import pyplot as plt
    from families import JacobiPolynomials

    J = JacobiPolynomials()
    N = 100
    k = 15

    x, w = J.gauss_quadrature(N)
    V = J.eval(x, range(k))

    plt.plot(x, V[:, :k])
    plt.show()
Exemplo n.º 8
0
if __name__ == "__main__":
    from matplotlib import pyplot as plt
    from families import JacobiPolynomials, HermitePolynomials
    import variableTransformations as VT
    from scipy.stats import multivariate_normal
    from math import pi

    def fun(x):
        return 2 * x**2
        # return np.ones(len(x))

    '''
    Example 1: $\int_{-1}^1 x^2 dx$
    Use Legendre polynomials, w(x)=1, x in [-1,1], 0 otherwise
    '''
    J = JacobiPolynomials(alpha=0, beta=0)
    N = 30
    k = 30
    x, w = J.gauss_quadrature(N)
    print(np.dot(fun(x), w) * 2)
    # >> outputs 1/3 but the solution is 2/3
    '''
    Example 2: $\int_{-inf}^inf e^{-x^2} x^2 dx$
    Use Hermite polynomials, w(x)=e^{-x^2}
    '''
    H = HermitePolynomials(rho=0)
    N = 10
    k = 10
    x, w = H.gauss_quadrature(N)
    print(np.dot(fun(x), w) * np.sqrt(pi))
Exemplo n.º 9
0

if __name__ == "__main__":

    import matplotlib.pyplot as plt
    from matplotlib import cm
    from mpl_toolkits.mplot3d import Axes3D
    from families import JacobiPolynomials
    import opoly1d, indexing

    import pdb

    d = 4
    k = 3

    J = JacobiPolynomials()
    P = TensorialPolynomials(J, d)
    #ab = opoly1d.jacobi_recurrence(k+1, alpha=0, beta=0)

    lambdas = indexing.total_degree_indices(d, k)

    if d == 2:
        N = 50
        x = np.linspace(-1, 1, N)
        X, Y = np.meshgrid(x, x)

        XX = np.concatenate((X.reshape(X.size, 1), Y.reshape(Y.size, 1)),
                            axis=1)

        p = P.eval(XX, lambdas)
Exemplo n.º 10
0
def v(n, gamma, c):
    P = JacobiPolynomials(alpha=gamma, beta=gamma)

    return lambda x: sum(c[i] * P.eval(x, i, d=0) for i in range(len(c)))
Exemplo n.º 11
0
def create_K_function(n, gamma):
    P = JacobiPolynomials(alpha=gamma, beta=gamma)

    return lambda x: np.sqrt(np.sum(P.eval(x, range(n + 1), d=0)**2, axis=1))