from fannypack.utils import pdb_safety_net

from dynamics_learning.custom.lr_functions import lr5
from dynamics_learning.data.datasets import MITPushDatasetConfig
from dynamics_learning.networks.baseline.planet_baseline import (
    OverShoot,
    PlaNetBaselineFilterConfig,
)
from dynamics_learning.networks.estimator import EstimatorConfig
from dynamics_learning.training.configs import ExpConfig
from dynamics_learning.training.experiments import train

model_config: EstimatorConfig
exp_config: ExpConfig
pdb_safety_net()

hyperparameter_defaults = dict(batch_size=16,
                               learning_rate=1e-3,
                               epochs=400,
                               latent_dim=16)
HyperParameterConfig = namedtuple("HyperParameterConfig",
                                  list(hyperparameter_defaults.keys()))
hy_config = HyperParameterConfig(**hyperparameter_defaults)

dataset_config = MITPushDatasetConfig(
    traj_len=50,  # 10 for cylinder, 20 for mit push
    num_viz_trajectories=20,
    pixel_res=256,
    raw=True,
    cond=False,
Exemplo n.º 2
0
def evaluate(
    exp_config: ExpConfig,
    dataset_config: DatasetConfig,
    experiment_name: Optional[str] = None,
    save_summary: bool = False,
    debug: bool = False,
) -> None:
    """Evaluates a network.

    Parameters
    ----------
    exp_config : ExpConfig
        Specifies all information regarding the experiment.
    experiment_name : str
        Name of experiment to load.
    save_summary : bool, default=False
        Flag indicating whether to visualize a summary of the evaluation.
    debug : bool, default=False
        Flag indicating whether to evaluate in debug mode.
    """
    pdb_safety_net()

    # set random seed for repeatability
    np.random.seed(0)
    torch.manual_seed(0)
    check_valid(exp_config)

    # build model
    estimator = exp_config.model.create()

    # set up buddy
    # some hacks to get around serialization
    # TODO figure out a better way to do this
    metadata_dir = "metadata"
    dir = tempfile.gettempdir()
    assert exp_config.name is not None
    buddy = Buddy(exp_config.name, estimator, optimizer_type="adam", metadata_dir=dir)
    buddy._metadata_dir = metadata_dir

    # load the checkpoint
    if experiment_name is None:
        buddy.load_checkpoint()
    else:
        buddy.load_checkpoint(label="final", experiment_name=experiment_name)

    # provide network diagnostics.
    print()
    print("Model Architecture:")
    print(estimator)
    print(f"Total parameters: {count_parameters(estimator)}")
    print(f"Total trainable parameters: {count_parameters(estimator, trainable=True)}")
    print(f"Latent dim size: {exp_config.model.latent_dim}")
    print()

    # model performance
    if debug:
        dataset_config = replace(dataset_config, num_viz_trajectories=3)
    dataset = dataset_config.create()
    vis_data = dataset.get_viz_data(buddy.device)

    # reporting eval losses: (vis_data, filter_times, predict_times)
    start_time = time.time()

    if isinstance(dataset_config, MITPushDatasetConfig):
        prediction_points = 25
    else:
        prediction_points = 50

    estimator.eval_loss(vis_data, 5, prediction_points)
    estimator.eval_loss(vis_data, 25, prediction_points)
    end_time = time.time()
    print(f"Total evaluation time: {end_time - start_time}")

    # summary plots
    if save_summary:
        assert exp_config.name is not None
        estimator.summary_plot(vis_data, exp_config.name, debug=debug)