Exemplo n.º 1
0
 def __init__(
         self,
         learn: Learner,
         do_remove: bool = True,
         hMin=-1,
         hMax=1,
         nBins=100,
         useClasses=False,  # if true compute histogram of classes in the last layer
         liveChart=True,  # show live chart of last layer
         modulesId=-1,  # array of modules to keep
 ):
     self.hMin = hMin or (-hMax)
     self.hMax = hMax
     self.nBins = nBins
     self.zero_bin = math.floor(-self.nBins * self.hMin /
                                (self.hMax - self.hMin))
     self.liveChart = liveChart
     self.allModules = [m for m in flatten_model(learn.model)]
     self.useClasses = useClasses
     modules = self.allModules
     if modulesId:
         modules = [self.allModules[i] for i in listify(modulesId)]
     self.allModules = modules if modules else self.allModules
     self.c = learn.data.c  # Number of Calsses
     super().__init__(learn, modules, do_remove)
Exemplo n.º 2
0
 def apply_tfms(self, tfms, duration:int=None, size_factor:tuple=(1,1), do_resolve:bool=True, padding_mode:str='reflection'):
     tfms = listify(tfms)
     size_tfms = [o for o in tfms if isinstance(o.tfm, TfmCrop)]
     if do_resolve:
         for tfm in tfms:
             tfm.resolve()
     x = self.clone()
     for tfm in tfms:
         if tfm in size_tfms:
             crop_target = self._get_duration_crop_target(duration)
             x = tfm(x, size=crop_target, padding_mode=padding_mode)
         else:
             x = tfm(x)
     # below is the resizing part, `separate from cropping`
     if size_factor:
         # read target size from size dictionary, passed to transform method, default to own length (no resize)
         _, *orig_size = x.shape
         orig_size = tuple(orig_size)
         # to multiply element-wise
         new_size = tuple(np.array(orig_size)*np.array(size_factor))
         if new_size != orig_size: x.resize(new_size)
         # if x.config is not None: x.config._sr *= new_size/orig_size
     return x
Exemplo n.º 3
0
    def plotActsHist(self,
                     cols=10,
                     toDisplay=None,
                     hScale=.05,
                     showEpochs=False,
                     showLayerInfo=True,
                     aspectAuto=True,
                     showImage=True):
        histsTensor = self.activations_histogram.stats_hist
        hists = [histsTensor[i] for i in range(histsTensor.shape[0])]
        if toDisplay:
            hists = [hists[i] for i in listify(toDisplay)]  # optionally focus

        n = len(hists)
        cols = cols or 3
        cols = min(cols, n)
        rows = int(math.ceil(n / cols))
        fig = plt.figure(figsize=(20, rows * 4.5))
        grid = plt.GridSpec(rows,
                            cols,
                            figure=fig,
                            left=None,
                            bottom=None,
                            right=None,
                            top=None,
                            wspace=.25,
                            hspace=.25)

        for i, l in enumerate(hists):
            img = self.getHistImg(l, self.useClasses)
            dead = self.getMin(l, self.useClasses, self.zero_bin)
            cr = math.floor(i / cols)
            cc = i % cols
            main_ax = fig.add_subplot(grid[cr, cc])
            if showImage: main_ax.imshow(img)
            layerId = listify(toDisplay)[i] if toDisplay else i
            m = self.allModules[layerId]
            outShapeText = f'  (out: {list(self.shape_out[m])})' if (
                m in self.shape_out) else ''
            title = f'L:{layerId}' + '\n' + splitAtFirstParenthesis(
                str(m), False, outShapeText)
            main_ax.set_title(title, fontsize=8, weight='bold')
            imgH = img.shape[0]
            main_ax.set_yticks([])
            main_ax.set_ylabel(str(self.hMin) + " : " + str(self.hMax))
            if aspectAuto: main_ax.set_aspect('auto')
            imgW = img.shape[1]
            imgH = img.shape[0]
            ratioH = -self.hMin / (self.hMax - self.hMin)
            zeroPosH = imgH * ratioH
            main_ax.plot(dead * l.shape[1], 'r', linewidth=2)  # X Axis
            main_ax.plot([0, imgW], [zeroPosH, zeroPosH], 'black')  # X Axis
            if (showEpochs):
                start = 0
                nEpochs = len(self.activations_histogram.stats_epoch)
                for i, hh in enumerate(self.activations_histogram.stats_epoch):
                    if (i < (nEpochs - 1)):
                        main_ax.plot([hh, hh], [0, imgH], color=[0, 0, 1])
                    end = hh  # rolling
                    domain = l[start:end]
                    domain_mean = domain.mean(-1)  # mean on classes
                    if self.useClasses:
                        self.plotPerc(main_ax,
                                      domain,
                                      hScale,
                                      1,
                                      start,
                                      colorById=True,
                                      addLabel=(0 == i))  #plot all
                        main_ax.legend(loc='upper left')
                    else:
                        self.plotPerc(main_ax, domain_mean, hScale, .5, start)
                    self.plotPerc(main_ax,
                                  domain_mean,
                                  hScale,
                                  1,
                                  start,
                                  linewidth=1.5)
                    start = hh
            main_ax.set_xlim([0, imgW])
            main_ax.set_ylim([0, imgH])
        plt.show()
        if showLayerInfo:
            for i, l in enumerate(self.allModules):
                print('{:2} {}'.format(i, l))