Exemplo n.º 1
0
 def setUpClass(cls):
     x = np.random.rand(1, 5, 5)
     x_pred = np.random.rand(1, 5, 7)
     cls.data = Data({'x': x, 'x_pred': x_pred})
     cls.map = MeanAveragePrecision(true_key='x',
                                    pred_key='x_pred',
                                    num_classes=3)
     cls.iou_element_shape = (5, 5)
Exemplo n.º 2
0
def get_estimator(data_dir=None,
                  model_dir=tempfile.mkdtemp(),
                  epochs=200,
                  batch_size_per_gpu=32,
                  train_steps_per_epoch=None,
                  eval_steps_per_epoch=None):
    num_device = get_num_devices()
    train_ds, val_ds = mscoco.load_data(root_dir=data_dir)
    train_ds = PreMosaicDataset(mscoco_ds=train_ds)
    batch_size = num_device * batch_size_per_gpu
    pipeline = fe.Pipeline(
        train_data=train_ds,
        eval_data=val_ds,
        ops=[
            ReadImage(inputs=("image1", "image2", "image3", "image4"),
                      outputs=("image1", "image2", "image3", "image4"),
                      mode="train"),
            ReadImage(inputs="image", outputs="image", mode="eval"),
            LongestMaxSize(max_size=640,
                           image_in="image1",
                           bbox_in="bbox1",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image2",
                           bbox_in="bbox2",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image3",
                           bbox_in="bbox3",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image4",
                           bbox_in="bbox4",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image",
                           bbox_in="bbox",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="eval"),
            PadIfNeeded(min_height=640,
                        min_width=640,
                        image_in="image",
                        bbox_in="bbox",
                        bbox_params=BboxParams("coco", min_area=1.0),
                        mode="eval",
                        border_mode=cv2.BORDER_CONSTANT,
                        value=(114, 114, 114)),
            CombineMosaic(inputs=("image1", "image2", "image3", "image4",
                                  "bbox1", "bbox2", "bbox3", "bbox4"),
                          outputs=("image", "bbox"),
                          mode="train"),
            CenterCrop(height=640,
                       width=640,
                       image_in="image",
                       bbox_in="bbox",
                       bbox_params=BboxParams("coco", min_area=1.0),
                       mode="train"),
            Sometimes(
                HorizontalFlip(image_in="image",
                               bbox_in="bbox",
                               bbox_params=BboxParams("coco", min_area=1.0),
                               mode="train")),
            HSVAugment(inputs="image", outputs="image", mode="train"),
            ToArray(inputs="bbox", outputs="bbox", dtype="float32"),
            CategoryID2ClassID(inputs="bbox", outputs="bbox"),
            GTBox(inputs="bbox",
                  outputs=("gt_sbbox", "gt_mbbox", "gt_lbbox"),
                  image_size=640),
            Delete(keys=("image1", "image2", "image3", "image4", "bbox1",
                         "bbox2", "bbox3", "bbox4", "bbox"),
                   mode="train"),
            Delete(keys="image_id", mode="eval"),
            Batch(batch_size=batch_size, pad_value=0)
        ])
    init_lr = 1e-2 / 64 * batch_size
    model = fe.build(
        lambda: YoloV5(w=640, h=640, c=3),
        optimizer_fn=lambda x: torch.optim.SGD(
            x, lr=init_lr, momentum=0.937, weight_decay=0.0005, nesterov=True),
        mixed_precision=True)
    network = fe.Network(ops=[
        RescaleTranspose(inputs="image", outputs="image"),
        ModelOp(model=model,
                inputs="image",
                outputs=("pred_s", "pred_m", "pred_l")),
        DecodePred(inputs=("pred_s", "pred_m", "pred_l"),
                   outputs=("pred_s", "pred_m", "pred_l")),
        ComputeLoss(inputs=("pred_s", "gt_sbbox"),
                    outputs=("sbbox_loss", "sconf_loss", "scls_loss")),
        ComputeLoss(inputs=("pred_m", "gt_mbbox"),
                    outputs=("mbbox_loss", "mconf_loss", "mcls_loss")),
        ComputeLoss(inputs=("pred_l", "gt_lbbox"),
                    outputs=("lbbox_loss", "lconf_loss", "lcls_loss")),
        Average(inputs=("sbbox_loss", "mbbox_loss", "lbbox_loss"),
                outputs="bbox_loss"),
        Average(inputs=("sconf_loss", "mconf_loss", "lconf_loss"),
                outputs="conf_loss"),
        Average(inputs=("scls_loss", "mcls_loss", "lcls_loss"),
                outputs="cls_loss"),
        Average(inputs=("bbox_loss", "conf_loss", "cls_loss"),
                outputs="total_loss"),
        PredictBox(width=640,
                   height=640,
                   inputs=("pred_s", "pred_m", "pred_l"),
                   outputs="box_pred",
                   mode="eval"),
        UpdateOp(model=model, loss_name="total_loss")
    ])
    traces = [
        MeanAveragePrecision(num_classes=80,
                             true_key='bbox',
                             pred_key='box_pred',
                             mode="eval"),
        BestModelSaver(model=model,
                       save_dir=model_dir,
                       metric='mAP',
                       save_best_mode="max")
    ]
    lr_schedule = {
        1:
        LRScheduler(model=model,
                    lr_fn=lambda step: lr_schedule_warmup(
                        step,
                        train_steps_epoch=np.ceil(len(train_ds) / batch_size),
                        init_lr=init_lr)),
        4:
        LRScheduler(model=model,
                    lr_fn=lambda epoch: cosine_decay(epoch,
                                                     cycle_length=epochs - 3,
                                                     init_lr=init_lr,
                                                     min_lr=init_lr / 100,
                                                     start=4))
    }
    traces.append(EpochScheduler(lr_schedule))
    estimator = fe.Estimator(
        pipeline=pipeline,
        network=network,
        epochs=epochs,
        traces=traces,
        monitor_names=["bbox_loss", "conf_loss", "cls_loss"],
        train_steps_per_epoch=train_steps_per_epoch,
        eval_steps_per_epoch=eval_steps_per_epoch)
    return estimator
Exemplo n.º 3
0
def get_estimator(data_dir=None,
                  model_dir=tempfile.mkdtemp(),
                  batch_size=16,
                  epochs=13,
                  max_train_steps_per_epoch=None,
                  max_eval_steps_per_epoch=None,
                  image_size=512,
                  num_classes=90):
    # pipeline
    train_ds, eval_ds = mscoco.load_data(root_dir=data_dir)
    pipeline = fe.Pipeline(
        train_data=train_ds,
        eval_data=eval_ds,
        batch_size=batch_size,
        ops=[
            ReadImage(inputs="image", outputs="image"),
            LongestMaxSize(image_size,
                           image_in="image",
                           image_out="image",
                           bbox_in="bbox",
                           bbox_out="bbox",
                           bbox_params=BboxParams("coco", min_area=1.0)),
            PadIfNeeded(
                image_size,
                image_size,
                border_mode=cv2.BORDER_CONSTANT,
                image_in="image",
                image_out="image",
                bbox_in="bbox",
                bbox_out="bbox",
                bbox_params=BboxParams("coco", min_area=1.0),
            ),
            Sometimes(
                HorizontalFlip(mode="train",
                               image_in="image",
                               image_out="image",
                               bbox_in="bbox",
                               bbox_out="bbox",
                               bbox_params='coco')),
            # normalize from uint8 to [-1, 1]
            Normalize(inputs="image",
                      outputs="image",
                      mean=1.0,
                      std=1.0,
                      max_pixel_value=127.5),
            ShiftLabel(inputs="bbox", outputs="bbox"),
            AnchorBox(inputs="bbox",
                      outputs="anchorbox",
                      width=image_size,
                      height=image_size),
            ChannelTranspose(inputs="image", outputs="image")
        ],
        pad_value=0)
    # network
    model = fe.build(model_fn=lambda: RetinaNet(num_classes=num_classes),
                     optimizer_fn=lambda x: torch.optim.SGD(
                         x, lr=2e-4, momentum=0.9, weight_decay=0.0001))
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="image", outputs=["cls_pred", "loc_pred"]),
        RetinaLoss(inputs=["anchorbox", "cls_pred", "loc_pred"],
                   outputs=["total_loss", "focal_loss", "l1_loss"]),
        UpdateOp(model=model, loss_name="total_loss"),
        PredictBox(input_shape=(image_size, image_size, 3),
                   inputs=["cls_pred", "loc_pred"],
                   outputs="pred",
                   mode="eval")
    ])
    # estimator
    traces = [
        LRScheduler(model=model, lr_fn=lr_fn),
        BestModelSaver(model=model,
                       save_dir=model_dir,
                       metric='mAP',
                       save_best_mode="max"),
        MeanAveragePrecision(num_classes=num_classes,
                             true_key='bbox',
                             pred_key='pred',
                             mode="eval")
    ]
    estimator = fe.Estimator(
        pipeline=pipeline,
        network=network,
        epochs=epochs,
        traces=traces,
        max_train_steps_per_epoch=max_train_steps_per_epoch,
        max_eval_steps_per_epoch=max_eval_steps_per_epoch,
        monitor_names=["l1_loss", "focal_loss"])
    return estimator