Exemplo n.º 1
0
def compute_intermediate_statistics(smiles, n_jobs=1, device='cpu',
                                    batch_size=512, pool=None):
    """
    The function precomputes statistics such as mean and variance for FCD, etc.
    It is useful to compute the statistics for test and scaffold test sets to
        speedup metrics calculation.
    """
    close_pool = False
    if pool is None:
        if n_jobs != 1:
            pool = Pool(n_jobs)
            close_pool = True
        else:
            pool = 1
    statistics = {}
    mols = mapper(pool)(get_mol, smiles)
    kwargs = {'n_jobs': pool, 'device': device, 'batch_size': batch_size}
    kwargs_fcd = {'n_jobs': n_jobs, 'device': device, 'batch_size': batch_size}
    statistics['FCD'] = FCDMetric(**kwargs_fcd).precalc(smiles)
    statistics['SNN'] = SNNMetric(**kwargs).precalc(mols)
    statistics['Frag'] = FragMetric(**kwargs).precalc(mols)
    statistics['Scaf'] = ScafMetric(**kwargs).precalc(mols)
    for name, func in [('logP', logP), ('SA', SA),
                       ('QED', QED), ('NP', NP),
                       ('weight', weight)]:
        statistics[name] = FrechetMetric(func, **kwargs).precalc(mols)
    if close_pool:
        pool.terminate()
    return statistics
Exemplo n.º 2
0
    def _get_metrics(self, ref, ref_mols, rollout):
        rollout_mols = mapper(self.n_jobs)(get_mol, rollout)
        result = [[0 if m is None else 1] for m in rollout_mols]

        if sum([r[0] for r in result], 0) == 0:
            return result

        rollout = remove_invalid(rollout, canonize=True, n_jobs=self.n_jobs)
        rollout_mols = mapper(self.n_jobs)(get_mol, rollout)
        if len(rollout) < 2:
            return result

        if len(self.metrics):
            for metric_name in self.metrics:
                if metric_name == 'fcd':
                    m = FCDMetric(n_jobs=self.n_jobs)(ref, rollout)
                elif metric_name == 'morgan':
                    m = SNNMetric(n_jobs=self.n_jobs)(ref_mols, rollout_mols)
                elif metric_name == 'fragments':
                    m = FragMetric(n_jobs=self.n_jobs)(ref_mols, rollout_mols)
                elif metric_name == 'scaffolds':
                    m = ScafMetric(n_jobs=self.n_jobs)(ref_mols, rollout_mols)
                elif metric_name == 'internal_diversity':
                    m = internal_diversity(rollout_mols, n_jobs=self.n_jobs)
                elif metric_name == 'filters':
                    m = fraction_passes_filters(
                        rollout_mols, n_jobs=self.n_jobs
                    )
                elif metric_name == 'logp':
                    m = -FrechetMetric(func=logP, n_jobs=self.n_jobs)(
                        ref_mols, rollout_mols
                    )
                elif metric_name == 'sa':
                    m = -FrechetMetric(func=SA, n_jobs=self.n_jobs)(
                        ref_mols, rollout_mols
                    )
                elif metric_name == 'qed':
                    m = -FrechetMetric(func=QED, n_jobs=self.n_jobs)(
                        ref_mols, rollout_mols
                    )
                elif metric_name == 'np':
                    m = -FrechetMetric(func=NP, n_jobs=self.n_jobs)(
                        ref_mols, rollout_mols
                    )
                elif metric_name == 'weight':
                    m = -FrechetMetric(func=weight, n_jobs=self.n_jobs)(
                        ref_mols, rollout_mols
                    )

                m = MetricsReward._nan2zero(m)
                for i in range(len(rollout)):
                    result[i].append(m)

        return result
Exemplo n.º 3
0
def get_all_metrics(test, gen, k=None, n_jobs=1, device='cpu',
                    batch_size=512, test_scaffolds=None,
                    ptest=None, ptest_scaffolds=None,
                    pool=None, gpu=None, train=None):
    """
    Computes all available metrics between test (scaffold test)
    and generated sets of SMILES.
    Parameters:
        test: list of test SMILES
        gen: list of generated SMILES
        k: int or list with values for unique@k. Will calculate number of
            unique molecules in the first k molecules. Default [1000, 10000]
        n_jobs: number of workers for parallel processing
        device: 'cpu' or 'cuda:n', where n is GPU device number
        batch_size: batch size for FCD metric
        test_scaffolds: list of scaffold test SMILES
            Will compute only on the general test set if not specified
        ptest: dict with precalculated statistics of the test set
        ptest_scaffolds: dict with precalculated statistics
            of the scaffold test set
        pool: optional multiprocessing pool to use for parallelization
        gpu: deprecated, use `device`
        train: list of train SMILES
    Available metrics:
        * %valid
        * %unique@k
        * Frechet ChemNet Distance (FCD)
        * Fragment similarity (Frag)
        * Scaffold similarity (Scaf)
        * Similarity to nearest neighbour (SNN)
        * Internal diversity (IntDiv)
        * Internal diversity 2: using square root of mean squared
            Tanimoto similarity (IntDiv2)
        * %passes filters (Filters)
        * Distribution difference for logP, SA, QED, NP, weight
        * Novelty (molecules not present in train)
    """
    if k is None:
        k = [1000, 10000]
    disable_rdkit_log()
    metrics = {}
    if gpu is not None:
        warnings.warn(
            "parameter `gpu` is deprecated. Use `device`",
            DeprecationWarning
        )
        if gpu == -1:
            device = 'cpu'
        else:
            device = 'cuda:{}'.format(gpu)
    close_pool = False
    if pool is None:
        if n_jobs != 1:
            pool = Pool(n_jobs)
            close_pool = True
        else:
            pool = 1
    metrics['valid'] = fraction_valid(gen, n_jobs=pool)
    gen = remove_invalid(gen, canonize=True)
    if not isinstance(k, (list, tuple)):
        k = [k]
    for _k in k:
        metrics['unique@{}'.format(_k)] = fraction_unique(gen, _k, pool)

    if ptest is None:
        ptest = compute_intermediate_statistics(test, n_jobs=n_jobs,
                                                device=device,
                                                batch_size=batch_size,
                                                pool=pool)
    if test_scaffolds is not None and ptest_scaffolds is None:
        ptest_scaffolds = compute_intermediate_statistics(
            test_scaffolds, n_jobs=n_jobs,
            device=device, batch_size=batch_size,
            pool=pool
        )
    mols = mapper(pool)(get_mol, gen)
    kwargs = {'n_jobs': pool, 'device': device, 'batch_size': batch_size}
    kwargs_fcd = {'n_jobs': n_jobs, 'device': device, 'batch_size': batch_size}
    metrics['FCD/Test'] = FCDMetric(**kwargs_fcd)(gen=gen, pref=ptest['FCD'])
    metrics['SNN/Test'] = SNNMetric(**kwargs)(gen=mols, pref=ptest['SNN'])
    metrics['Frag/Test'] = FragMetric(**kwargs)(gen=mols, pref=ptest['Frag'])
    metrics['Scaf/Test'] = ScafMetric(**kwargs)(gen=mols, pref=ptest['Scaf'])
    if ptest_scaffolds is not None:
        metrics['FCD/TestSF'] = FCDMetric(**kwargs_fcd)(
            gen=gen, pref=ptest_scaffolds['FCD']
        )
        metrics['SNN/TestSF'] = SNNMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['SNN']
        )
        metrics['Frag/TestSF'] = FragMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['Frag']
        )
        metrics['Scaf/TestSF'] = ScafMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['Scaf']
        )

    metrics['IntDiv'] = internal_diversity(mols, pool, device=device)
    metrics['IntDiv2'] = internal_diversity(mols, pool, device=device, p=2)
    metrics['Filters'] = fraction_passes_filters(mols, pool)

    # Properties
    for name, func in [('logP', logP), ('SA', SA),
                       ('QED', QED), ('NP', NP),
                       ('weight', weight)]:
        metrics[name] = FrechetMetric(func, **kwargs)(gen=mols,
                                                      pref=ptest[name])

    if train is not None:
        metrics['Novelty'] = novelty(mols, train, pool)
    enable_rdkit_log()
    if close_pool:
        pool.close()
        pool.join()
    return metrics
Exemplo n.º 4
0
def get_all_metrics(gen,
                    k=None,
                    n_jobs=1,
                    device='cpu',
                    batch_size=512,
                    pool=None,
                    test=None,
                    test_scaffolds=None,
                    ptest=None,
                    ptest_scaffolds=None,
                    train=None):
    """
    Computes all available metrics between test (scaffold test)
    and generated sets of SMILES.
    Parameters:
        gen: list of generated SMILES
        k: int or list with values for unique@k. Will calculate number of
            unique molecules in the first k molecules. Default [1000, 10000]
        n_jobs: number of workers for parallel processing
        device: 'cpu' or 'cuda:n', where n is GPU device number
        batch_size: batch size for FCD metric
        pool: optional multiprocessing pool to use for parallelization

        test (None or list): test SMILES. If None, will load
            a default test set
        test_scaffolds (None or list): scaffold test SMILES. If None, will
            load a default scaffold test set
        ptest (None or dict): precalculated statistics of the test set. If
            None, will load default test statistics. If you specified a custom
            test set, default test statistics will be ignored
        ptest_scaffolds (None or dict): precalculated statistics of the
            scaffold test set If None, will load default scaffold test
            statistics. If you specified a custom test set, default test
            statistics will be ignored
        train (None or list): train SMILES. If None, will load a default
            train set
    Available metrics:
        * %valid
        * %unique@k
        * Frechet ChemNet Distance (FCD)
        * Fragment similarity (Frag)
        * Scaffold similarity (Scaf)
        * Similarity to nearest neighbour (SNN)
        * Internal diversity (IntDiv)
        * Internal diversity 2: using square root of mean squared
            Tanimoto similarity (IntDiv2)
        * %passes filters (Filters)
        * Distribution difference for logP, SA, QED, weight
        * Novelty (molecules not present in train)
    """
    if test is None:
        if ptest is not None:
            raise ValueError("You cannot specify custom test "
                             "statistics for default test set")
        test = get_dataset('test')
        ptest = get_statistics('test')

    if test_scaffolds is None:
        if ptest_scaffolds is not None:
            raise ValueError("You cannot specify custom scaffold test "
                             "statistics for default scaffold test set")
        test_scaffolds = get_dataset('test_scaffolds')
        ptest_scaffolds = get_statistics('test_scaffolds')

    train = train or get_dataset('train')

    if k is None:
        k = [1000, 10000]
    disable_rdkit_log()
    metrics = {}
    close_pool = False
    if pool is None:
        if n_jobs != 1:
            pool = Pool(n_jobs)
            close_pool = True
        else:
            pool = 1
    metrics['valid'] = fraction_valid(gen, n_jobs=pool)
    gen = remove_invalid(gen, canonize=True)
    if not isinstance(k, (list, tuple)):
        k = [k]
    for _k in k:
        metrics['unique@{}'.format(_k)] = fraction_unique(gen, _k, pool)

    if ptest is None:
        ptest = compute_intermediate_statistics(test,
                                                n_jobs=n_jobs,
                                                device=device,
                                                batch_size=batch_size,
                                                pool=pool)
    if test_scaffolds is not None and ptest_scaffolds is None:
        ptest_scaffolds = compute_intermediate_statistics(
            test_scaffolds,
            n_jobs=n_jobs,
            device=device,
            batch_size=batch_size,
            pool=pool)
    mols = mapper(pool)(get_mol, gen)
    kwargs = {'n_jobs': pool, 'device': device, 'batch_size': batch_size}
    kwargs_fcd = {'n_jobs': n_jobs, 'device': device, 'batch_size': batch_size}
    metrics['FCD/Test'] = FCDMetric(**kwargs_fcd)(gen=gen, pref=ptest['FCD'])
    metrics['SNN/Test'] = SNNMetric(**kwargs)(gen=mols, pref=ptest['SNN'])
    metrics['Frag/Test'] = FragMetric(**kwargs)(gen=mols, pref=ptest['Frag'])
    metrics['Scaf/Test'] = ScafMetric(**kwargs)(gen=mols, pref=ptest['Scaf'])
    if ptest_scaffolds is not None:
        metrics['FCD/TestSF'] = FCDMetric(**kwargs_fcd)(
            gen=gen, pref=ptest_scaffolds['FCD'])
        metrics['SNN/TestSF'] = SNNMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['SNN'])
        metrics['Frag/TestSF'] = FragMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['Frag'])
        metrics['Scaf/TestSF'] = ScafMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['Scaf'])

    metrics['IntDiv'] = internal_diversity(mols, pool, device=device)
    metrics['IntDiv2'] = internal_diversity(mols, pool, device=device, p=2)
    metrics['Filters'] = fraction_passes_filters(mols, pool)

    # Properties
    for name, func in [('logP', logP), ('SA', SA), ('QED', QED),
                       ('weight', weight)]:
        metrics[name] = WassersteinMetric(func, **kwargs)(gen=mols,
                                                          pref=ptest[name])

    if train is not None:
        metrics['Novelty'] = novelty(mols, train, pool)
    enable_rdkit_log()
    if close_pool:
        pool.close()
        pool.join()
    return metrics
Exemplo n.º 5
0
    def calculate(self,
                  gen,
                  calc_valid=False,
                  calc_unique=False,
                  unique_k=None,
                  se_k=None):
        metrics = {}
        metrics['#'] = len(gen)

        # Calculate validity
        if calc_valid:
            metrics['Validity'] = fraction_valid(gen, self.pool)

        gen = remove_invalid(gen, canonize=True)
        mols = mapper(self.pool)(get_mol, gen)
        metrics['# valid'] = len(gen)

        # Calculate Uniqueness
        if calc_unique:
            metrics['Uniqueness'] = fraction_unique(gen=gen,
                                                    k=None,
                                                    n_jobs=self.pool)
            if unique_k is not None:
                metrics[f'Unique@{unique_k/1000:.0f}k'] = fraction_unique(
                    gen=gen, k=unique_k, n_jobs=self.pool)

        # Now subset only unique molecules
        gen = list(set(gen))
        mols = mapper(self.pool)(get_mol, gen)
        # Precalculate some things
        mol_fps = fingerprints(mols,
                               self.pool,
                               already_unique=True,
                               fp_type='morgan')
        scaffs = compute_scaffolds(mols, n_jobs=self.n_jobs)
        scaff_gen = list(scaffs.keys())
        scaff_mols = mapper(self.pool)(get_mol, scaff_gen)
        metrics['# valid & unique'] = len(gen)

        # Calculate diversity related metrics
        if self.train is not None:
            metrics['Novelty'] = novelty(gen, self.train, self.pool)
        metrics['IntDiv1'] = internal_diversity(gen=mol_fps,
                                                n_jobs=self.pool,
                                                device=self.device)
        metrics['IntDiv2'] = internal_diversity(gen=mol_fps,
                                                n_jobs=self.pool,
                                                device=self.device,
                                                p=2)
        metrics['SEDiv'] = se_diversity(gen=mols, n_jobs=self.pool)
        if se_k is not None:
            metrics[f'SEDiv@{se_k/1000:.0f}k'] = se_diversity(gen=mols,
                                                              k=se_k,
                                                              n_jobs=self.pool,
                                                              normalize=True)
        metrics['ScaffDiv'] = internal_diversity(gen=scaff_mols,
                                                 n_jobs=self.pool,
                                                 device=self.device,
                                                 fp_type='morgan')
        metrics['Scaff uniqueness'] = len(scaff_gen) / len(gen)
        # Calculate % pass filters
        metrics['Filters'] = fraction_passes_filters(mols, self.pool)

        # Calculate FCD
        pgen = FCDMetric(**self.kwargs_fcd).precalc(gen)
        if self.ptrain:
            metrics['FCD_train'] = FCDMetric(**self.kwargs_fcd)(
                pgen=pgen, pref=self.ptrain)
        if self.ptest:
            metrics['FCD_test'] = FCDMetric(**self.kwargs_fcd)(pgen=pgen,
                                                               pref=self.ptest)
        if self.ptest_scaffolds:
            metrics['FCD_testSF'] = FCDMetric(**self.kwargs_fcd)(
                pgen=pgen, pref=self.ptest_scaffolds)
        if self.ptarget:
            metrics['FCD_target'] = FCDMetric(**self.kwargs_fcd)(
                pgen=pgen, pref=self.ptarget)
        # Test metrics
        if self.test_int is not None:
            metrics['SNN_test'] = SNNMetric(**self.kwargs)(
                pgen={
                    'fps': mol_fps
                }, pref=self.test_int['SNN'])
            metrics['Frag_test'] = FragMetric(**self.kwargs)(
                gen=mols, pref=self.test_int['Frag'])
            metrics['Scaf_test'] = ScafMetric(**self.kwargs)(
                pgen={
                    'scaf': scaffs
                }, pref=self.test_int['Scaf'])
        # Test scaff metrics
        if self.test_scaffolds_int is not None:
            metrics['SNN_testSF'] = SNNMetric(**self.kwargs)(
                pgen={
                    'fps': mol_fps
                }, pref=self.test_scaffolds_int['SNN'])
            metrics['Frag_testSF'] = FragMetric(**self.kwargs)(
                gen=mols, pref=self.test_scaffolds_int['Frag'])
            metrics['Scaf_testSF'] = ScafMetric(**self.kwargs)(
                pgen={
                    'scaf': scaffs
                }, pref=self.test_scaffolds_int['Scaf'])
        # Target metrics
        if self.target_int is not None:
            metrics['SNN_target'] = SNNMetric(**self.kwargs)(
                pgen={
                    'fps': mol_fps
                }, pref=self.target_int['SNN'])
            metrics['Frag_target'] = FragMetric(**self.kwargs)(
                gen=mols, pref=self.target_int['Frag'])
            metrics['Scaf_target'] = ScafMetric(**self.kwargs)(
                pgen={
                    'scaf': scaffs
                }, pref=self.target_int['Scaf'])

        return metrics