Exemplo n.º 1
0
def sort_files():
    """ sorts raw files into the correct folders """
    logger.info("Sorting raw behavior files")
    fls = files(raw_data_folder / "tosort")

    if isinstance(fls, list):
        logger.debug(f"Sorting {len(fls)} files")

        for f in track(fls, description="sorting", transient=True):
            src = raw_data_folder / "tosort" / f.name

            if f.suffix == ".avi":
                dst = raw_data_folder / "video" / f.name
            elif f.suffix == ".bin" or f.suffix == ".csv":
                dst = raw_data_folder / "analog_inputs" / f.name
            else:
                logger.warning(f"File not recognized: {f}")
                continue

            if dst.exists():
                logger.debug(f"Destinatoin file already exists, skipping")
            else:
                logger.info(f"Moving file '{src}' to '{dst}'")
                shutil.move(src, dst)
    else:
        logger.warning(f"Expected files list got: {fls}")
Exemplo n.º 2
0
def save_bouts_h5():
    bouts_files = files(
        save_folder,
        "*_complete_bout.json",
    )
    logger.info(f"Found {len(bouts_files)} bouts JSON files")

    # load from json and save as .h5
    bouts_json = []
    for bf in track(
            bouts_files,
            description="loading bouts JSON",
            transient=True,
    ):
        bouts_json.append(from_json(bf))

    recorder.add_data(pd.DataFrame(bouts_json), f"complete_bouts", fmt="h5")
from loguru import logger

from fcutils.progress import track
from fcutils.path import files
"""
Creates a set of bash scripts to analyze files with DLC on HPC
"""

# videos_folder = Path(r'W:\swc\branco\Federico\Locomotion\dlc\videos')
videos_folder = Path(r"W:\swc\branco\Federico\Locomotion\raw\video")
tracking_folder = Path(r"W:\swc\branco\Federico\Locomotion\raw\tracking")
bash_folder = Path(r"W:\swc\branco\Federico\Locomotion\dlc\dlc_individuals")
winstor_folder = PurePosixPath("nfs/winstor/branco/Federico/Locomotion")

# get videos that have not been tracked yet
videos = files(videos_folder, "FC_*.avi")
videos = [
    v for v in videos if "test" not in v.name.lower() and "t_" not in v.name
]

trackings = [f.name for f in files(tracking_folder, "*.h5")]
logger.info(f"Found {len(videos)} videos and {len(trackings)} tracking files")

to_track = []
for video in videos:
    tracked = [f for f in trackings if video.stem in f]
    if not tracked:
        to_track.append(video)

# prepare bash files
BASH_TEMPLATE = """#! /bin/bash
Exemplo n.º 4
0
from pathlib import Path

import numpy as np

from myterial.utils import make_palette
import brainrender as br
from myterial import blue_grey_dark, blue_grey_light
from fcutils.path import files

# ----------------------------------- prep ----------------------------------- #
br.settings.SHOW_AXES = False
br.settings.ROOT_ALPHA = 0.1

probes_folder = Path(
    r"D:\Dropbox (UCL)\Rotation_vte\Locomotion\reconstructed_probe_location")
probes_files = files(probes_folder, pattern="*_0.npy")

save_folder = Path(
    r"D:\Dropbox (UCL)\Rotation_vte\Presentations\Presentations\Fiete lab")

colors = make_palette(blue_grey_dark, blue_grey_light, len(probes_files))

# ----------------------------- create renderings ---------------------------- #
for repeat in range(3):
    # scene and brain regions
    scene = br.Scene(inset=False, screenshots_folder=save_folder)

    scene.add_brain_region("CUN", "GRN", "PPN", alpha=0.9)

    # add probes
    for n, probe in enumerate(probes_files):
Exemplo n.º 5
0
    sys.path.append("./")

    import matplotlib.pyplot as plt
    import pandas as pd
    from myterial import pink

    import draw

    f, ax = plt.subplots(figsize=(7, 10))

    # load and draw tracking data
    from fcutils.path import files

    for fp in files(
            "/Users/federicoclaudi/Dropbox (UCL)/Rotation_vte/Locomotion/analysis/control/",
            "*.h5",
    ):
        tracking = pd.read_hdf(fp, key="hdf")
        tracking.x = 20 - tracking.x + 20
        # draw.Tracking.scatter(tracking.x, tracking.y, c=tracking.theta, vmin=0, vmax=360, cmap='bwr', lw=1, ec='k')
        draw.Tracking(tracking.x, tracking.y, alpha=0.7)

    # draw hairpin arena
    draw.Hairpin(ax)

    # draw waypoints
    wps = Waypoints()
    for wp in wps:
        draw.Arrow(wp.x, wp.y, wp.theta, 2, width=4, color=pink, outline=True)

    # fit dubin path
["k", "b", "r", "m", green]

# scene and brain regions
scene = br.Scene()

scene.add_brain_region("CUN", "GRN", alpha=.88)
scene.add_brain_region("IC",
                       "PRNr",
                       "PRNc",
                       "SCm",
                       alpha=0.25,
                       silhouette=False)
scene.add_brain_region("PPN", alpha=0.8, silhouette=False)
# add probes
for n, probe in enumerate(files(probes_folder, pattern="*_0.npy")):
    coords = np.load(probe)
    probe_actor = scene.add(
        br.actors.Points(coords, colors=colors[probe.stem], radius=40))
    logger.info(
        f"Adding probe from {probe.name} with color: {colors[probe.stem]}")

# slice
plane = scene.atlas.get_plane(norm=(0, 0, 1),
                              pos=scene.root._mesh.centerOfMass())
scene.slice(plane)

# render
cam = {
    "pos": (7196, 247, -38602),
    "viewup": (0, -1, 0),
Exemplo n.º 7
0
def test_files(fld):
    from_str = path.files(fld)
    from_pth = path.files(Path(fld))

    assert len(from_str) == len(from_pth)
Exemplo n.º 8
0
def fill_session_table(table):
    logger.info("Filling in session table")
    in_table = table.fetch("name")
    mice = from_yaml("data\dbase\mice.yaml")

    # Load recordings sessoins metadata
    recorded_sessions = pd.read_excel(
        table.recordings_metadata_path, engine="odf"
    )

    # Get the videos of all sessions
    vids = [f for f in files(raw_data_folder / "video") if ".avi" in f.name]

    for video in track(vids, description="Adding sessions", transient=True):
        # Get session data
        name = video.name.split("_video")[0]
        if name in in_table:
            continue

        if "opto" in name:
            logger.info(
                f"Skipping session {name} because its OPTOGENETICS session"
            )
            continue

        if "test" in name.lower() in name.lower():
            logger.info(f"Skipping session {name} as it is a test")
            continue

        # get date and mouse
        try:
            date = name.split("_")[1]
            mouse = [
                m["mouse"]["mouse_id"]
                for m in mice
                if m["mouse"]["mouse_id"] in name
            ][0]
        except IndexError:
            logger.warning(
                f"Skipping session {name} because couldnt figure out the mouse or date it was done on"
            )
            continue
        key = dict(mouse_id=mouse, name=name, date=date)

        # get file paths
        key["video_file_path"] = (
            raw_data_folder / "video" / (name + "_video.avi")
        )
        key["ai_file_path"] = (
            raw_data_folder / "analog_inputs" / (name + "_analog.bin")
        )

        key["csv_file_path"] = (
            raw_data_folder / "analog_inputs" / (name + "_data.csv")
        )

        if (
            not key["video_file_path"].exists()
            or not key["ai_file_path"].exists()
        ):
            raise FileNotFoundError(
                f"Either video or AI files not found for session: {name} with data:\n{key}"
            )

        # get ephys files & arena type
        if name in recorded_sessions["bonsai filename"].values:
            rec = recorded_sessions.loc[
                recorded_sessions["bonsai filename"] == name
            ].iloc[0]
            base_path = (
                table.recordings_raw_data_path
                / rec["recording folder"]
                / (rec["recording folder"] + "_imec0")
                / (rec["recording folder"] + "_t0.imec0")
            )
            key["ephys_ap_data_path"] = str(base_path) + ".ap.bin"
            key["ephys_ap_meta_path"] = str(base_path) + ".ap.meta"

            key["arena"] = rec.arena
            key["is_recording"] = 1
            key["date"] = rec.date
        else:
            key["ephys_ap_data_path"] = ""
            key["ephys_ap_meta_path"] = ""
            key["arena"] = "hairpin"
            key["is_recording"] = 0

        # add to table
        insert_entry_in_table(key["name"], "name", key, table)