Exemplo n.º 1
0
def sort_files():
    """ sorts raw files into the correct folders """
    logger.info("Sorting raw behavior files")
    fls = files(raw_data_folder / "tosort")

    if isinstance(fls, list):
        logger.debug(f"Sorting {len(fls)} files")

        for f in track(fls, description="sorting", transient=True):
            src = raw_data_folder / "tosort" / f.name

            if f.suffix == ".avi":
                dst = raw_data_folder / "video" / f.name
            elif f.suffix == ".bin" or f.suffix == ".csv":
                dst = raw_data_folder / "analog_inputs" / f.name
            else:
                logger.warning(f"File not recognized: {f}")
                continue

            if dst.exists():
                logger.debug(f"Destinatoin file already exists, skipping")
            else:
                logger.info(f"Moving file '{src}' to '{dst}'")
                shutil.move(src, dst)
    else:
        logger.warning(f"Expected files list got: {fls}")
Exemplo n.º 2
0
def save_bouts_JSON():
    tracking = {}
    logger.info("Fetching bouts")
    bouts = pd.DataFrame(
        (LocomotionBouts & 'complete="true"' & 'direction="outbound"').fetch())
    logger.info(f"Got {len(bouts)} bouts")

    for i, bout in track(bouts.iterrows(), total=len(bouts)):
        save_name = f"{i}_complete_bout.json"
        if (save_folder / save_name).exists():
            continue
        else:
            if bout["name"] not in tracking.keys():
                tracking[bout["name"]] = Tracking.get_session_tracking(
                    bout["name"], movement=False, body_only=False)
                time.sleep(1)

            trk = LocomotionBouts.get_bout_tracking(bout,
                                                    tracking[bout["name"]])
            trk = {
                bp: np.array(list(v.values()))
                for bp, v in trk.to_dict().items()
            }

            bout_dict = {**bout.to_dict(), **trk}
            for k, v in bout_dict.items():
                if isinstance(v, np.ndarray):
                    bout_dict[k] = list(v)

            recorder.add_data(bout_dict, f"{i}_complete_bout", fmt="json")
Exemplo n.º 3
0
def save_rois():
    tracking = {}
    for ROI in arena.ROIs_dict.keys():
        # fetch from database
        crossings = pd.DataFrame((ROICrossing * ROICrossing.InitialCondition
                                  & f'roi="{ROI}"'
                                  & "mouse_exits=1").fetch())
        logger.info(f"Loaded {len(crossings)} crossings for: '{ROI}'")

        for i, crossing in track(crossings.iterrows(), total=len(crossings)):
            save_name = f"crossing_{ROI}_{i}.json"
            if (save_folder / save_name).exists():
                continue

            if crossing["name"] not in tracking.keys():
                tracking[crossing["name"]] = Tracking.get_session_tracking(
                    crossing["name"], movement=False, body_only=False)
                time.sleep(1)

            crossing_trk = ROICrossing.get_crossing_tracking(
                crossing, tracking[crossing["name"]])
            roi_crossing_dict = {**crossing.to_dict(), **crossing_trk}

            for k, v in roi_crossing_dict.items():
                if isinstance(v, np.ndarray):
                    roi_crossing_dict[k] = list(v)

            recorder.add_data(roi_crossing_dict,
                              f"crossing_{ROI}_{i}",
                              fmt="json")

        recorder.add_data(crossings, f"{ROI}_crossings", fmt="h5")
Exemplo n.º 4
0
def save_bouts_h5():
    bouts_files = files(
        save_folder,
        "*_complete_bout.json",
    )
    logger.info(f"Found {len(bouts_files)} bouts JSON files")

    # load from json and save as .h5
    bouts_json = []
    for bf in track(
            bouts_files,
            description="loading bouts JSON",
            transient=True,
    ):
        bouts_json.append(from_json(bf))

    recorder.add_data(pd.DataFrame(bouts_json), f"complete_bouts", fmt="h5")
Exemplo n.º 5
0
def load_complete_bouts(
    duration_max: float = 10,
    keep: int = -1,
    linearize_to: Path = None,
    window: int = 4,
    trim: bool = True,
) -> List[Locomotion]:
    """
        Loads complete bouts saved as a .h5 file
    """
    # load and clean complete bouts
    _bouts = pd.read_hdf(
        paths.analysis_folder / "behavior" / "saved_data" /
        "complete_bouts.h5",
        key="hdf",
    )

    _bouts = _bouts.loc[(_bouts.start_roi == 0)
                        & (_bouts.duration < duration_max)]
    _bouts = _bouts.sort_values("duration").iloc[:keep]
    logger.debug(f"Kept {len(_bouts)} bouts")

    # turn into Locomotion bouts
    bouts = []
    for i, bout in track(_bouts.iterrows(),
                         total=len(_bouts),
                         description="loading bouts..."):

        locomotion_bout = Locomotion(mouse,
                                     bout,
                                     fps=60,
                                     smoothing_window=window)

        # add extra stuff from the locomotion bout (e.g. gcoord)
        for key in bout.index:
            if "_x" not in key and "_y" not in key:
                if isinstance(bout[key], list):
                    bout_data = np.array(bout[key])
                else:
                    bout_data = bout[key]
                setattr(locomotion_bout, key, bout_data)

        bouts.append(locomotion_bout)

    return bouts
module load miniconda
module load cuda/9.0

conda activate dlc
export DLClight=True

echo "running tracking"
python dlc_on_hpc.py '/nfs/winstor/branco/Federico/Locomotion/dlc/loco-FC-2021-10-14/config.yaml' '/VIDEO' '/DEST'

"""

# export CUDA_VISIBLE_DEVICES=0

logger.info(
    f"Found {len(to_track)} videos left to track. Generating bash files.")
for video in track(to_track):
    winstor_video_path = winstor_folder / "raw" / "video" / video.name
    # winstor_video_path = winstor_folder / "dlc" / "videos" / video.name
    winstor_save_path = winstor_folder / "raw" / "tracking"

    bash_content = BASH_TEMPLATE.replace("VIDEO",
                                         str(winstor_video_path)).replace(
                                             "DEST", str(winstor_save_path))

    bash_path = bash_folder / (video.stem + ".sh")
    with open(bash_path, "w") as fout:
        fout.write(bash_content)

    # dos2unix
    content, outsize = "", 0
    with open(bash_path, "rb") as infile:
Exemplo n.º 7
0
axes = f.subplot_mosaic(
    """
        AABBB
        AACCC
    """
)

draw.ROI(ROI, ax=axes["A"])

SKIP = 0
N =  10  # len(_bouts)
S, T = np.full((80, N), np.nan), np.full((80, N), np.nan)
_S, _T = np.full((80, N), np.nan), np.full((80, N), np.nan)

simulated = []
for i in track(range(N)):
    bout = paths[i]
    trajectory, _time = MSD(
        bout, skip=SKIP, start_frame=2, end_frame=-2
    ).simulate()

    # plot
    draw.Tracking(bout.x, bout.y, zorder=-1, ax=axes["A"], alpha=0.8)
    draw.Tracking(
        trajectory.x,
        trajectory.y,
        zorder=10,
        ax=axes["A"],
        color="red",
        alpha=0.8,
    )
Exemplo n.º 8
0
def animate_one(ROI: str, crossing_id: int, FPS: int):
    scale = 1 / 30  # to scale velocity vectors
    save_folder = (paths.analysis_folder / "behavior" /
                   "roi_crossings_animations")

    # ----------------------------------- prep ----------------------------------- #
    # load tracking
    bouts = pd.read_hdf(paths.analysis_folder / "behavior" / "roi_crossings" /
                        f"{ROI}_crossings.h5")
    bout = bouts.sort_values("duration").iloc[crossing_id]
    logger.info(f"Animating bout {crossing_id} - {round(bout.duration, 2)}s")
    # tracking: dict = ROICrossing.get_crossing_tracking(bout.crossing_id)

    # generate a path from tracking
    path = Path(bout.x, bout.y)

    # create fig and start camera
    if ROI == "T4":
        f = plt.figure(figsize=(12, 12))
    elif "S" in ROI:
        f = plt.figure(figsize=(8, 14))
    else:
        f = plt.figure(figsize=(5, 14))

    axes = f.subplot_mosaic("""
            AA
            AA
            BB
        """)
    camera = Camera(f)

    # ----------------------------------- plot ----------------------------------- #
    n_interpolated_frames = int(60 / FPS)
    n_frames = len(bout.x) - 1
    trajectory = GrowingPath()
    for frame in track(range(n_frames), total=n_frames):
        # repeat each frame N times interpolating between frames
        for interpol in np.linspace(0, 1, n_interpolated_frames):
            # get interpolated quantities
            x = interpolate_at_frame(path.x, frame, interpol)
            y = interpolate_at_frame(path.y, frame, interpol)
            speed = interpolate_at_frame(path.speed, frame, interpol)

            trajectory.update(x, y, speed=speed)

            # time elapsed
            _time = (np.arange(len(trajectory.speed)) / n_interpolated_frames /
                     60)

            # plot the arena
            draw.ROI(ROI, set_ax=True, shade=False, ax=axes["A"])

            # plot tracking so far
            draw.Tracking(trajectory.x, trajectory.y, lw=3, ax=axes["A"])
            draw.Dot(x, y, s=50, ax=axes["A"])

            # plot speed and velocity vectors
            draw.Arrow(
                x,
                y,
                interpolate_at_frame(path.velocity.angle,
                                     frame,
                                     interpol,
                                     method="step"),
                L=scale *
                interpolate_at_frame(path.velocity.magnitude, frame, interpol),
                color=colors.velocity,
                outline=True,
                width=2,
                ax=axes["A"],
            )
            draw.Arrow(
                x,
                y,
                path.acceleration.angle[frame],
                L=4 * scale * path.acceleration.magnitude[frame],
                color=colors.acceleration,
                outline=True,
                width=2,
                ax=axes["A"],
                zorder=200,
            )

            # plot speed trace
            axes["B"].fill_between(_time,
                                   0,
                                   trajectory.speed,
                                   alpha=0.5,
                                   color=colors.speed)
            axes["B"].plot(_time, trajectory.speed, lw=4, color=colors.speed)

            axes["A"].set(title=f"{ROI} - crossing: {crossing_id}")
            axes["B"].set(xlabel="time (s)", ylabel="speed (cm/s)")
            camera.snap()

    # ------------------------------- video creation ------------------------------- #
    save_path = save_folder / f"{ROI}_{bout.crossing_id}.mp4"
    logger.info(f"Saving animation @: '{save_path}'")
    animation = camera.animate(interval=1000 / FPS)
    animation.save(save_path, fps=FPS)
    logger.info("Done!")

    plt.cla()
    plt.close(f)
    del camera
    del animation

    # ----------------------------------- plot ----------------------------------- #
    f = plot_roi_crossing(bout, step=4)
    recorder.add_figures(svg=False)
    plt.close(f)
from tpd import recorder
from myterial import salmon, teal, indigo

import draw
from data.dbase.db_tables import Tracking, ValidatedSession
from fcutils.progress import track

folder = Path(r"D:\Dropbox (UCL)\Rotation_vte\Locomotion\analysis")
recorder.start(base_folder=folder, folder_name="all_tracking", timestamp=False)
'''
    Plot the tracking for each session to check that everything is ok
'''

sessions = ValidatedSession().fetch('name')

for session in track(sessions):
    save_name = folder / 'all_tracking' / (session + '.png')
    if save_name.exists() or 'open' in session:
        continue

    tracking = Tracking.get_session_tracking(session,
                                             body_only=False,
                                             movement=False)

    if tracking.empty:
        logger.info(f'"{session}" - no tracking')
        continue

    body = tracking.loc[tracking.bpname == 'body'].iloc[0]
    snout = tracking.loc[tracking.bpname == 'snout'].iloc[0]
    paw = tracking.loc[tracking.bpname == 'right_fl'].iloc[0]
Exemplo n.º 10
0
def get_rois_crossings(
    tracking: pd.DataFrame,
    ROI: arena.ROI,
    max_duration:float,
    min_speed:float,
) -> dict:
    # get every time the mouse enters the ROI
    enters = sorted([x for x in set(get_onset_offset(tracking.global_coord > ROI.g_0, 0.5)[0]) if x > 0])

    # loop over the results
    results = []

    for start in track(enters, transient=True):
        if tracking.speed[start] < min_speed or start < 60:
            continue

        # check if anywhere the mouse left the ROI
        gcoord = tracking.global_coord[start:start+max_duration+1]
        if gcoord[0] > ROI.g_0 + 0.1:
            continue

        if np.any(gcoord < ROI.g_0):
            continue
        elif np.any(gcoord > ROI.g_1):
            end = np.where(tracking.global_coord[start:] >= ROI.g_1)[0][0] + start
            exit = True
        else:
            end = start + max_duration
            exit = False

        if end > len(tracking.x):
            continue

        if tracking.x.min()<0 or tracking.x.max()>40:
            continue

        duration =  (end - start) / 60
        if duration < .2 or duration > max_duration/60:
            continue

        if tracking.global_coord[end] > ROI.g_1 + 0.05:
            continue
        
        if end <= start:
            continue


        # get data
        results.append(dict(
            roi = ROI.name,
            start_frame = start,
            end_frame = end,
            duration = (end - start) / 60,
            mouse_exits = 1 if exit else -1,
            gcoord = tracking.global_coord[start:end],
            x = tracking.x[start:end]+0.5,
            y = tracking.y[start:end]+0.5,
            speed = tracking.speed[start:end],
            theta = tracking.theta[start:end],
            thetadot = tracking.thetadot[start:end],
            thetadotdot = tracking.thetadotdot[start:end],
            acceleration  = tracking.acceleration[start:end],
        ))

    return results
Exemplo n.º 11
0
def fill_session_table(table):
    logger.info("Filling in session table")
    in_table = table.fetch("name")
    mice = from_yaml("data\dbase\mice.yaml")

    # Load recordings sessoins metadata
    recorded_sessions = pd.read_excel(
        table.recordings_metadata_path, engine="odf"
    )

    # Get the videos of all sessions
    vids = [f for f in files(raw_data_folder / "video") if ".avi" in f.name]

    for video in track(vids, description="Adding sessions", transient=True):
        # Get session data
        name = video.name.split("_video")[0]
        if name in in_table:
            continue

        if "opto" in name:
            logger.info(
                f"Skipping session {name} because its OPTOGENETICS session"
            )
            continue

        if "test" in name.lower() in name.lower():
            logger.info(f"Skipping session {name} as it is a test")
            continue

        # get date and mouse
        try:
            date = name.split("_")[1]
            mouse = [
                m["mouse"]["mouse_id"]
                for m in mice
                if m["mouse"]["mouse_id"] in name
            ][0]
        except IndexError:
            logger.warning(
                f"Skipping session {name} because couldnt figure out the mouse or date it was done on"
            )
            continue
        key = dict(mouse_id=mouse, name=name, date=date)

        # get file paths
        key["video_file_path"] = (
            raw_data_folder / "video" / (name + "_video.avi")
        )
        key["ai_file_path"] = (
            raw_data_folder / "analog_inputs" / (name + "_analog.bin")
        )

        key["csv_file_path"] = (
            raw_data_folder / "analog_inputs" / (name + "_data.csv")
        )

        if (
            not key["video_file_path"].exists()
            or not key["ai_file_path"].exists()
        ):
            raise FileNotFoundError(
                f"Either video or AI files not found for session: {name} with data:\n{key}"
            )

        # get ephys files & arena type
        if name in recorded_sessions["bonsai filename"].values:
            rec = recorded_sessions.loc[
                recorded_sessions["bonsai filename"] == name
            ].iloc[0]
            base_path = (
                table.recordings_raw_data_path
                / rec["recording folder"]
                / (rec["recording folder"] + "_imec0")
                / (rec["recording folder"] + "_t0.imec0")
            )
            key["ephys_ap_data_path"] = str(base_path) + ".ap.bin"
            key["ephys_ap_meta_path"] = str(base_path) + ".ap.meta"

            key["arena"] = rec.arena
            key["is_recording"] = 1
            key["date"] = rec.date
        else:
            key["ephys_ap_data_path"] = ""
            key["ephys_ap_meta_path"] = ""
            key["arena"] = "hairpin"
            key["is_recording"] = 0

        # add to table
        insert_entry_in_table(key["name"], "name", key, table)
Exemplo n.º 12
0
def test_track():
    N = np.linspace(0, 1000, 1)

    for n in track(np.arange(N), transient=True):
        pass