Exemplo n.º 1
0
    def from_proto(cls, feature_table_proto: FeatureTableProto):
        """
        Creates a feature table from a protobuf representation of a feature table

        Args:
            feature_table_proto: A protobuf representation of a feature table

        Returns:
            Returns a FeatureTableProto object based on the feature table protobuf
        """

        feature_table = cls(
            name=feature_table_proto.spec.name,
            entities=[entity for entity in feature_table_proto.spec.entities],
            features=[
                Feature.from_proto(feature)
                for feature in feature_table_proto.spec.features
            ],
            labels=feature_table_proto.spec.labels,
            max_age=(None if feature_table_proto.spec.max_age.seconds == 0
                     and feature_table_proto.spec.max_age.nanos == 0 else
                     feature_table_proto.spec.max_age),
            batch_source=DataSource.from_proto(
                feature_table_proto.spec.batch_source),
            stream_source=(
                None
                if not feature_table_proto.spec.stream_source.ByteSize() else
                DataSource.from_proto(feature_table_proto.spec.stream_source)),
        )

        feature_table._created_timestamp = feature_table_proto.meta.created_timestamp

        return feature_table
Exemplo n.º 2
0
    def from_proto(cls, feature_view_proto: FeatureViewProto):
        """
        Creates a feature view from a protobuf representation of a feature view.

        Args:
            feature_view_proto: A protobuf representation of a feature view.

        Returns:
            A FeatureViewProto object based on the feature view protobuf.
        """
        batch_source = DataSource.from_proto(feature_view_proto.spec.batch_source)
        stream_source = (
            DataSource.from_proto(feature_view_proto.spec.stream_source)
            if feature_view_proto.spec.HasField("stream_source")
            else None
        )
        feature_view = cls(
            name=feature_view_proto.spec.name,
            entities=[entity for entity in feature_view_proto.spec.entities],
            features=[
                Feature(
                    name=feature.name,
                    dtype=ValueType(feature.value_type),
                    labels=dict(feature.labels),
                )
                for feature in feature_view_proto.spec.features
            ],
            tags=dict(feature_view_proto.spec.tags),
            online=feature_view_proto.spec.online,
            ttl=(
                None
                if feature_view_proto.spec.ttl.seconds == 0
                and feature_view_proto.spec.ttl.nanos == 0
                else feature_view_proto.spec.ttl
            ),
            batch_source=batch_source,
            stream_source=stream_source,
        )

        if feature_view_proto.meta.HasField("created_timestamp"):
            feature_view.created_timestamp = (
                feature_view_proto.meta.created_timestamp.ToDatetime()
            )
        if feature_view_proto.meta.HasField("last_updated_timestamp"):
            feature_view.last_updated_timestamp = (
                feature_view_proto.meta.last_updated_timestamp.ToDatetime()
            )

        for interval in feature_view_proto.meta.materialization_intervals:
            feature_view.materialization_intervals.append(
                (
                    utils.make_tzaware(interval.start_time.ToDatetime()),
                    utils.make_tzaware(interval.end_time.ToDatetime()),
                )
            )

        return feature_view
Exemplo n.º 3
0
    def from_proto(cls, feature_view_proto: FeatureViewProto):
        """
        Creates a feature view from a protobuf representation of a feature view.

        Args:
            feature_view_proto: A protobuf representation of a feature view.

        Returns:
            A FeatureViewProto object based on the feature view protobuf.
        """
        batch_source = DataSource.from_proto(
            feature_view_proto.spec.batch_source)
        stream_source = (
            DataSource.from_proto(feature_view_proto.spec.stream_source)
            if feature_view_proto.spec.HasField("stream_source") else None)
        feature_view = cls(
            name=feature_view_proto.spec.name,
            entities=[entity for entity in feature_view_proto.spec.entities],
            schema=[
                Field.from_proto(field_proto)
                for field_proto in feature_view_proto.spec.features
            ],
            description=feature_view_proto.spec.description,
            tags=dict(feature_view_proto.spec.tags),
            owner=feature_view_proto.spec.owner,
            online=feature_view_proto.spec.online,
            ttl=(timedelta(
                days=0) if feature_view_proto.spec.ttl.ToNanoseconds() == 0
                 else feature_view_proto.spec.ttl.ToTimedelta()),
            source=batch_source,
        )
        if stream_source:
            feature_view.stream_source = stream_source

        # FeatureViewProjections are not saved in the FeatureView proto.
        # Create the default projection.
        feature_view.projection = FeatureViewProjection.from_definition(
            feature_view)

        if feature_view_proto.meta.HasField("created_timestamp"):
            feature_view.created_timestamp = (
                feature_view_proto.meta.created_timestamp.ToDatetime())
        if feature_view_proto.meta.HasField("last_updated_timestamp"):
            feature_view.last_updated_timestamp = (
                feature_view_proto.meta.last_updated_timestamp.ToDatetime())

        for interval in feature_view_proto.meta.materialization_intervals:
            feature_view.materialization_intervals.append((
                utils.make_tzaware(interval.start_time.ToDatetime()),
                utils.make_tzaware(interval.end_time.ToDatetime()),
            ))

        return feature_view
Exemplo n.º 4
0
    def GetHistoricalFeatures(self, request: GetHistoricalFeaturesRequest,
                              context):
        """Produce a training dataset, return a job id that will provide a file reference"""

        if not self.is_whitelisted(request.project):
            raise ValueError(
                f"Project {request.project} is not whitelisted. Please contact your Feast administrator to whitelist it."
            )

        job = start_historical_feature_retrieval_job(
            client=self.client,
            project=request.project,
            entity_source=DataSource.from_proto(request.entity_source),
            feature_tables=self.client._get_feature_tables_from_feature_refs(
                list(request.feature_refs), request.project),
            output_format=request.output_format,
            output_path=request.output_location,
        )

        output_file_uri = job.get_output_file_uri(block=False)

        job_start_timestamp = Timestamp()
        job_start_timestamp.FromDatetime(job.get_start_time())

        return GetHistoricalFeaturesResponse(
            id=job.get_id(),
            output_file_uri=output_file_uri,
            job_start_time=job_start_timestamp,
        )
Exemplo n.º 5
0
    def from_proto(cls, feature_view_proto: FeatureViewProto):
        """
        Creates a feature view from a protobuf representation of a feature view

        Args:
            feature_view_proto: A protobuf representation of a feature view

        Returns:
            Returns a FeatureViewProto object based on the feature view protobuf
        """

        feature_view = cls(
            name=feature_view_proto.spec.name,
            entities=[entity for entity in feature_view_proto.spec.entities],
            features=[
                Feature(
                    name=feature.name,
                    dtype=ValueType(feature.value_type),
                    labels=feature.labels,
                ) for feature in feature_view_proto.spec.features
            ],
            tags=dict(feature_view_proto.spec.tags),
            online=feature_view_proto.spec.online,
            ttl=(None if feature_view_proto.spec.ttl.seconds == 0
                 and feature_view_proto.spec.ttl.nanos == 0 else
                 feature_view_proto.spec.ttl),
            input=DataSource.from_proto(feature_view_proto.spec.input),
        )

        feature_view.created_timestamp = feature_view_proto.meta.created_timestamp

        return feature_view
Exemplo n.º 6
0
    def GetHistoricalFeatures(self, request, context):
        """Produce a training dataset, return a job id that will provide a file reference"""
        job = self.client.get_historical_features(
            request.feature_refs,
            entity_source=DataSource.from_proto(request.entity_source),
            project=request.project,
            output_location=request.output_location,
        )

        output_file_uri = job.get_output_file_uri(block=False)

        return GetHistoricalFeaturesResponse(id=job.get_id(),
                                             output_file_uri=output_file_uri)
Exemplo n.º 7
0
    def GetHistoricalFeatures(self, request: GetHistoricalFeaturesRequest,
                              context):
        """Produce a training dataset, return a job id that will provide a file reference"""
        job = start_historical_feature_retrieval_job(
            client=self.client,
            project=request.project,
            entity_source=DataSource.from_proto(request.entity_source),
            feature_tables=self.client._get_feature_tables_from_feature_refs(
                list(request.feature_refs), request.project),
            output_format=request.output_format,
            output_path=request.output_location,
        )

        output_file_uri = job.get_output_file_uri(block=False)

        return GetHistoricalFeaturesResponse(id=job.get_id(),
                                             output_file_uri=output_file_uri)
Exemplo n.º 8
0
    def list_data_sources(self,
                          project: str,
                          allow_cache: bool = False) -> List[DataSource]:
        """
        Retrieve a list of data sources from the registry

        Args:
            project: Filter data source based on project name
            allow_cache: Whether to allow returning data sources from a cached registry

        Returns:
            List of data sources
        """
        registry_proto = self._get_registry_proto(allow_cache=allow_cache)
        data_sources = []
        for data_source_proto in registry_proto.data_sources:
            if data_source_proto.project == project:
                data_sources.append(DataSource.from_proto(data_source_proto))
        return data_sources
Exemplo n.º 9
0
    def get_data_source(self,
                        name: str,
                        project: str,
                        allow_cache: bool = False) -> DataSource:
        """
        Retrieves a data source.

        Args:
            name: Name of data source
            project: Feast project that this data source belongs to
            allow_cache: Whether to allow returning this data source from a cached registry

        Returns:
            Returns either the specified data source, or raises an exception if none is found
        """
        registry = self._get_registry_proto(allow_cache=allow_cache)

        for data_source in registry.data_sources:
            if data_source.project == project and data_source.name == name:
                return DataSource.from_proto(data_source)
        raise DataSourceObjectNotFoundException(name, project=project)