def prep_bq_fs_and_fv(
    bq_source_type: str, ) -> Iterator[Tuple[FeatureStore, FeatureView]]:
    client = bigquery.Client()
    gcp_project = client.project
    bigquery_dataset = "test_ingestion"
    dataset = bigquery.Dataset(f"{gcp_project}.{bigquery_dataset}")
    client.create_dataset(dataset, exists_ok=True)
    dataset.default_table_expiration_ms = (1000 * 60 * 60 * 24 * 14
                                           )  # 2 weeks in milliseconds
    client.update_dataset(dataset, ["default_table_expiration_ms"])

    df = create_dataset()

    job_config = bigquery.LoadJobConfig()
    table_ref = f"{gcp_project}.{bigquery_dataset}.{bq_source_type}_correctness_{int(time.time_ns())}"
    query = f"SELECT * FROM `{table_ref}`"
    job = client.load_table_from_dataframe(df,
                                           table_ref,
                                           job_config=job_config)
    job.result()

    bigquery_source = BigQuerySource(
        table_ref=table_ref if bq_source_type == "table" else None,
        query=query if bq_source_type == "query" else None,
        event_timestamp_column="ts",
        created_timestamp_column="created_ts",
        date_partition_column="",
        field_mapping={
            "ts_1": "ts",
            "id": "driver_id"
        },
    )

    fv = driver_feature_view(bigquery_source)
    e = Entity(
        name="driver",
        description="id for driver",
        join_key="driver_id",
        value_type=ValueType.INT32,
    )
    with tempfile.TemporaryDirectory() as repo_dir_name:
        config = RepoConfig(
            registry=str(Path(repo_dir_name) / "registry.db"),
            project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}",
            provider="gcp",
            online_store=DatastoreOnlineStoreConfig(
                namespace="integration_test"),
        )
        fs = FeatureStore(config=config)
        fs.apply([fv, e])

        yield fs, fv

        fs.teardown()
def prep_redis_fs_and_fv() -> Iterator[Tuple[FeatureStore, FeatureView]]:
    with tempfile.NamedTemporaryFile(suffix=".parquet") as f:
        df = create_dataset()
        f.close()
        df.to_parquet(f.name)
        file_source = FileSource(
            file_format=ParquetFormat(),
            path=f"file://{f.name}",
            event_timestamp_column="ts",
            created_timestamp_column="created_ts",
            date_partition_column="",
            field_mapping={
                "ts_1": "ts",
                "id": "driver_id"
            },
        )
        fv = driver_feature_view(file_source)
        e = Entity(
            name="driver",
            description="id for driver",
            join_key="driver_id",
            value_type=ValueType.INT32,
        )
        project = f"test_redis_correctness_{str(uuid.uuid4()).replace('-', '')}"
        print(f"Using project: {project}")
        with tempfile.TemporaryDirectory() as repo_dir_name:
            config = RepoConfig(
                registry=str(Path(repo_dir_name) / "registry.db"),
                project=project,
                provider="local",
                online_store=RedisOnlineStoreConfig(
                    type="redis",
                    redis_type=RedisType.redis,
                    connection_string="localhost:6379,db=0",
                ),
            )
            fs = FeatureStore(config=config)
            fs.apply([fv, e])

            yield fs, fv

            fs.teardown()
def prep_redshift_fs_and_fv(
    source_type: str, ) -> Iterator[Tuple[FeatureStore, FeatureView]]:
    client = aws_utils.get_redshift_data_client("us-west-2")
    s3 = aws_utils.get_s3_resource("us-west-2")

    df = create_dataset()

    table_name = f"test_ingestion_{source_type}_correctness_{int(time.time_ns())}_{random.randint(1000, 9999)}"

    offline_store = RedshiftOfflineStoreConfig(
        cluster_id="feast-integration-tests",
        region="us-west-2",
        user="******",
        database="feast",
        s3_staging_location=
        "s3://feast-integration-tests/redshift/tests/ingestion",
        iam_role="arn:aws:iam::402087665549:role/redshift_s3_access_role",
    )

    aws_utils.upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{table_name}.parquet",
        offline_store.iam_role,
        table_name,
        df,
    )

    redshift_source = RedshiftSource(
        table=table_name if source_type == "table" else None,
        query=f"SELECT * FROM {table_name}"
        if source_type == "query" else None,
        event_timestamp_column="ts",
        created_timestamp_column="created_ts",
        date_partition_column="",
        field_mapping={
            "ts_1": "ts",
            "id": "driver_id"
        },
    )

    fv = driver_feature_view(redshift_source)
    e = Entity(
        name="driver",
        description="id for driver",
        join_key="driver_id",
        value_type=ValueType.INT32,
    )
    with tempfile.TemporaryDirectory(
    ) as repo_dir_name, tempfile.TemporaryDirectory() as data_dir_name:
        config = RepoConfig(
            registry=str(Path(repo_dir_name) / "registry.db"),
            project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}",
            provider="local",
            online_store=SqliteOnlineStoreConfig(
                path=str(Path(data_dir_name) / "online_store.db")),
            offline_store=offline_store,
        )
        fs = FeatureStore(config=config)
        fs.apply([fv, e])

        yield fs, fv

        fs.teardown()

    # Clean up the uploaded Redshift table
    aws_utils.execute_redshift_statement(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        f"DROP TABLE {table_name}",
    )
Exemplo n.º 4
0
def teardown(repo_config: RepoConfig, repo_path: Path):
    # Cannot pass in both repo_path and repo_config to FeatureStore.
    feature_store = FeatureStore(repo_path=repo_path, config=None)
    feature_store.teardown()
Exemplo n.º 5
0
def test_historical_features_from_bigquery_sources_containing_backfills(
        capsys):
    now = datetime.now().replace(microsecond=0, second=0, minute=0)
    tomorrow = now + timedelta(days=1)

    entity_dataframe = pd.DataFrame(data=[
        {
            "driver_id": 1001,
            "event_timestamp": now + timedelta(days=2)
        },
        {
            "driver_id": 1002,
            "event_timestamp": now + timedelta(days=2)
        },
    ])

    driver_stats_df = pd.DataFrame(data=[
        # Duplicated rows simple case
        {
            "driver_id": 1001,
            "avg_daily_trips": 10,
            "event_timestamp": now,
            "created": tomorrow,
        },
        {
            "driver_id": 1001,
            "avg_daily_trips": 20,
            "event_timestamp": tomorrow,
            "created": tomorrow,
        },
        # Duplicated rows after a backfill
        {
            "driver_id": 1002,
            "avg_daily_trips": 30,
            "event_timestamp": now,
            "created": tomorrow,
        },
        {
            "driver_id": 1002,
            "avg_daily_trips": 40,
            "event_timestamp": tomorrow,
            "created": now,
        },
    ])

    expected_df = pd.DataFrame(data=[
        {
            "driver_id": 1001,
            "event_timestamp": now + timedelta(days=2),
            "avg_daily_trips": 20,
        },
        {
            "driver_id": 1002,
            "event_timestamp": now + timedelta(days=2),
            "avg_daily_trips": 40,
        },
    ])

    bigquery_dataset = (
        f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}"
    )

    with BigQueryDataSet(bigquery_dataset), TemporaryDirectory() as temp_dir:
        gcp_project = bigquery.Client().project

        # Entity Dataframe SQL query
        table_id = f"{bigquery_dataset}.orders"
        stage_orders_bigquery(entity_dataframe, table_id)
        entity_df_query = f"SELECT * FROM {gcp_project}.{table_id}"

        # Driver Feature View
        driver_table_id = f"{gcp_project}.{bigquery_dataset}.driver_hourly"
        stage_driver_hourly_stats_bigquery_source(driver_stats_df,
                                                  driver_table_id)

        store = FeatureStore(config=RepoConfig(
            registry=os.path.join(temp_dir, "registry.db"),
            project="".join(
                random.choices(string.ascii_uppercase + string.digits, k=10)),
            provider="gcp",
            offline_store=BigQueryOfflineStoreConfig(type="bigquery",
                                                     dataset=bigquery_dataset),
        ))

        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        driver_fv = FeatureView(
            name="driver_stats",
            entities=["driver"],
            features=[Feature(name="avg_daily_trips", dtype=ValueType.INT32)],
            batch_source=BigQuerySource(
                table_ref=driver_table_id,
                event_timestamp_column="event_timestamp",
                created_timestamp_column="created",
            ),
            ttl=None,
        )

        store.apply([driver, driver_fv])

        try:
            job_from_sql = store.get_historical_features(
                entity_df=entity_df_query,
                features=["driver_stats:avg_daily_trips"],
                full_feature_names=False,
            )

            start_time = datetime.utcnow()
            actual_df_from_sql_entities = job_from_sql.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_sql_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=["driver_id"]).reset_index(
                    drop=True),
                actual_df_from_sql_entities[expected_df.columns].sort_values(
                    by=["driver_id"]).reset_index(drop=True),
                check_dtype=False,
            )

        finally:
            store.teardown()
Exemplo n.º 6
0
def test_historical_features_from_redshift_sources(provider_type,
                                                   infer_event_timestamp_col,
                                                   capsys, full_feature_names):
    client = aws_utils.get_redshift_data_client("us-west-2")
    s3 = aws_utils.get_s3_resource("us-west-2")

    offline_store = RedshiftOfflineStoreConfig(
        cluster_id="feast-integration-tests",
        region="us-west-2",
        user="******",
        database="feast",
        s3_staging_location=
        "s3://feast-integration-tests/redshift/tests/ingestion",
        iam_role="arn:aws:iam::402087665549:role/redshift_s3_access_role",
    )

    start_date = datetime.now().replace(microsecond=0, second=0, minute=0)
    (
        customer_entities,
        driver_entities,
        end_date,
        orders_df,
        start_date,
    ) = generate_entities(start_date, infer_event_timestamp_col)

    redshift_table_prefix = (
        f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}"
    )

    # Stage orders_df to Redshift
    table_name = f"{redshift_table_prefix}_orders"
    entity_df_query = f"SELECT * FROM {table_name}"
    orders_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{table_name}.parquet",
        offline_store.iam_role,
        table_name,
        orders_df,
    )

    # Stage driver_df to Redshift
    driver_df = driver_data.create_driver_hourly_stats_df(
        driver_entities, start_date, end_date)
    driver_table_name = f"{redshift_table_prefix}_driver_hourly"
    driver_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{driver_table_name}.parquet",
        offline_store.iam_role,
        driver_table_name,
        driver_df,
    )

    # Stage customer_df to Redshift
    customer_df = driver_data.create_customer_daily_profile_df(
        customer_entities, start_date, end_date)
    customer_table_name = f"{redshift_table_prefix}_customer_profile"
    customer_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{customer_table_name}.parquet",
        offline_store.iam_role,
        customer_table_name,
        customer_df,
    )

    with orders_context, driver_context, customer_context, TemporaryDirectory(
    ) as temp_dir:
        driver_source = RedshiftSource(
            table=driver_table_name,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        driver_fv = create_driver_hourly_stats_feature_view(driver_source)

        customer_source = RedshiftSource(
            table=customer_table_name,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        customer_fv = create_customer_daily_profile_feature_view(
            customer_source)

        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        customer = Entity(name="customer_id", value_type=ValueType.INT64)

        if provider_type == "local":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="default",
                provider="local",
                online_store=SqliteOnlineStoreConfig(path=os.path.join(
                    temp_dir, "online_store.db"), ),
                offline_store=offline_store,
            ))
        elif provider_type == "aws":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="".join(
                    random.choices(string.ascii_uppercase + string.digits,
                                   k=10)),
                provider="aws",
                online_store=DynamoDBOnlineStoreConfig(region="us-west-2"),
                offline_store=offline_store,
            ))
        else:
            raise Exception(
                "Invalid provider used as part of test configuration")

        store.apply([driver, customer, driver_fv, customer_fv])

        try:
            event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               in orders_df.columns else "e_ts")
            expected_df = get_expected_training_df(
                customer_df,
                customer_fv,
                driver_df,
                driver_fv,
                orders_df,
                event_timestamp,
                full_feature_names,
            )

            job_from_sql = store.get_historical_features(
                entity_df=entity_df_query,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            start_time = datetime.utcnow()
            actual_df_from_sql_entities = job_from_sql.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_sql_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_sql_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_sql_entities = job_from_sql.to_arrow()
            assert_frame_equal(
                actual_df_from_sql_entities.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                table_from_sql_entities.to_pandas().sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
            )

            timestamp_column = ("e_ts" if infer_event_timestamp_col else
                                DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL)

            entity_df_query_with_invalid_join_key = (
                f"select order_id, driver_id, customer_id as customer, "
                f"order_is_success, {timestamp_column} FROM {table_name}")
            # Rename the join key; this should now raise an error.
            assertpy.assert_that(
                store.get_historical_features(
                    entity_df=entity_df_query_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                ).to_df).raises(errors.FeastEntityDFMissingColumnsError
                                ).when_called_with()

            job_from_df = store.get_historical_features(
                entity_df=orders_df,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            # Rename the join key; this should now raise an error.
            orders_df_with_invalid_join_key = orders_df.rename(
                {"customer_id": "customer"}, axis="columns")
            assertpy.assert_that(
                store.get_historical_features(
                    entity_df=orders_df_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                ).to_df).raises(errors.FeastEntityDFMissingColumnsError
                                ).when_called_with()

            start_time = datetime.utcnow()
            actual_df_from_df_entities = job_from_df.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"Time to execute job_from_df.to_df() = '{(end_time - start_time)}'\n"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_df_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_df_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_df_entities = job_from_df.to_arrow()
            assert_frame_equal(
                actual_df_from_df_entities.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                table_from_df_entities.to_pandas().sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
            )
        finally:
            store.teardown()
Exemplo n.º 7
0
def test_historical_features_from_bigquery_sources(provider_type,
                                                   infer_event_timestamp_col,
                                                   capsys, full_feature_names):
    start_date = datetime.now().replace(microsecond=0, second=0, minute=0)
    (
        customer_entities,
        driver_entities,
        end_date,
        orders_df,
        start_date,
    ) = generate_entities(start_date, infer_event_timestamp_col)

    bigquery_dataset = (
        f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}"
    )

    with BigQueryDataSet(bigquery_dataset), TemporaryDirectory() as temp_dir:
        gcp_project = bigquery.Client().project

        # Orders Query
        table_id = f"{bigquery_dataset}.orders"
        stage_orders_bigquery(orders_df, table_id)
        entity_df_query = f"SELECT * FROM {gcp_project}.{table_id}"

        # Driver Feature View
        driver_df = driver_data.create_driver_hourly_stats_df(
            driver_entities, start_date, end_date)
        driver_table_id = f"{gcp_project}.{bigquery_dataset}.driver_hourly"
        stage_driver_hourly_stats_bigquery_source(driver_df, driver_table_id)
        driver_source = BigQuerySource(
            table_ref=driver_table_id,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        driver_fv = create_driver_hourly_stats_feature_view(driver_source)

        # Customer Feature View
        customer_df = driver_data.create_customer_daily_profile_df(
            customer_entities, start_date, end_date)
        customer_table_id = f"{gcp_project}.{bigquery_dataset}.customer_profile"

        stage_customer_daily_profile_bigquery_source(customer_df,
                                                     customer_table_id)
        customer_source = BigQuerySource(
            table_ref=customer_table_id,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        customer_fv = create_customer_daily_profile_feature_view(
            customer_source)

        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        customer = Entity(name="customer_id", value_type=ValueType.INT64)

        if provider_type == "local":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="default",
                provider="local",
                online_store=SqliteOnlineStoreConfig(path=os.path.join(
                    temp_dir, "online_store.db"), ),
                offline_store=BigQueryOfflineStoreConfig(
                    type="bigquery", dataset=bigquery_dataset),
            ))
        elif provider_type == "gcp":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="".join(
                    random.choices(string.ascii_uppercase + string.digits,
                                   k=10)),
                provider="gcp",
                offline_store=BigQueryOfflineStoreConfig(
                    type="bigquery", dataset=bigquery_dataset),
            ))
        elif provider_type == "gcp_custom_offline_config":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="".join(
                    random.choices(string.ascii_uppercase + string.digits,
                                   k=10)),
                provider="gcp",
                offline_store=BigQueryOfflineStoreConfig(type="bigquery",
                                                         dataset="foo"),
            ))
        else:
            raise Exception(
                "Invalid provider used as part of test configuration")

        store.apply([driver, customer, driver_fv, customer_fv])

        try:
            event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               in orders_df.columns else "e_ts")
            expected_df = get_expected_training_df(
                customer_df,
                customer_fv,
                driver_df,
                driver_fv,
                orders_df,
                event_timestamp,
                full_feature_names,
            )

            job_from_sql = store.get_historical_features(
                entity_df=entity_df_query,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            start_time = datetime.utcnow()
            actual_df_from_sql_entities = job_from_sql.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_sql_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_sql_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_sql_entities = job_from_sql.to_arrow()
            assert_frame_equal(actual_df_from_sql_entities,
                               table_from_sql_entities.to_pandas())

            timestamp_column = ("e_ts" if infer_event_timestamp_col else
                                DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL)

            entity_df_query_with_invalid_join_key = (
                f"select order_id, driver_id, customer_id as customer, "
                f"order_is_success, {timestamp_column}, FROM {gcp_project}.{table_id}"
            )
            # Rename the join key; this should now raise an error.
            assertpy.assert_that(store.get_historical_features).raises(
                errors.FeastEntityDFMissingColumnsError).when_called_with(
                    entity_df=entity_df_query_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                )

            job_from_df = store.get_historical_features(
                entity_df=orders_df,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            # Rename the join key; this should now raise an error.
            orders_df_with_invalid_join_key = orders_df.rename(
                {"customer_id": "customer"}, axis="columns")
            assertpy.assert_that(store.get_historical_features).raises(
                errors.FeastEntityDFMissingColumnsError).when_called_with(
                    entity_df=orders_df_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                )

            # Make sure that custom dataset name is being used from the offline_store config
            if provider_type == "gcp_custom_offline_config":
                assertpy.assert_that(
                    job_from_df.query).contains("foo.feast_entity_df")
            else:
                assertpy.assert_that(job_from_df.query).contains(
                    f"{bigquery_dataset}.feast_entity_df")

            start_time = datetime.utcnow()
            actual_df_from_df_entities = job_from_df.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"Time to execute job_from_df.to_df() = '{(end_time - start_time)}'\n"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_df_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_df_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_df_entities = job_from_df.to_arrow()
            assert_frame_equal(actual_df_from_df_entities,
                               table_from_df_entities.to_pandas())
        finally:
            store.teardown()
Exemplo n.º 8
0
def test_historical_features_from_parquet_sources(infer_event_timestamp_col,
                                                  full_feature_names):
    start_date = datetime.now().replace(microsecond=0, second=0, minute=0)
    (
        customer_entities,
        driver_entities,
        end_date,
        orders_df,
        start_date,
    ) = generate_entities(start_date, infer_event_timestamp_col)

    with TemporaryDirectory() as temp_dir:
        driver_df = driver_data.create_driver_hourly_stats_df(
            driver_entities, start_date, end_date)
        driver_source = stage_driver_hourly_stats_parquet_source(
            temp_dir, driver_df)
        driver_fv = create_driver_hourly_stats_feature_view(driver_source)
        customer_df = driver_data.create_customer_daily_profile_df(
            customer_entities, start_date, end_date)
        customer_source = stage_customer_daily_profile_parquet_source(
            temp_dir, customer_df)
        customer_fv = create_customer_daily_profile_feature_view(
            customer_source)

        customer_fs = feature_service(
            "customer_feature_service",
            [
                customer_fv[[
                    "current_balance", "avg_passenger_count",
                    "lifetime_trip_count"
                ]],
                driver_fv[["conv_rate", "avg_daily_trips"]],
            ],
        )
        print(f"Customer fs features: {customer_fs.features}")

        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        customer = Entity(name="customer_id", value_type=ValueType.INT64)

        store = FeatureStore(config=RepoConfig(
            registry=os.path.join(temp_dir, "registry.db"),
            project="default",
            provider="local",
            online_store=SqliteOnlineStoreConfig(
                path=os.path.join(temp_dir, "online_store.db")),
        ))

        store.apply([driver, customer, driver_fv, customer_fv, customer_fs])

        job = store.get_historical_features(
            entity_df=orders_df,
            features=[
                "driver_stats:conv_rate",
                "driver_stats:avg_daily_trips",
                "customer_profile:current_balance",
                "customer_profile:avg_passenger_count",
                "customer_profile:lifetime_trip_count",
            ],
            full_feature_names=full_feature_names,
        )

        actual_df = job.to_df()
        event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                           if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                           in orders_df.columns else "e_ts")
        expected_df = get_expected_training_df(
            customer_df,
            customer_fv,
            driver_df,
            driver_fv,
            orders_df,
            event_timestamp,
            full_feature_names=full_feature_names,
        )

        expected_df.sort_values(
            by=[event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True)
        expected_df = expected_df.reindex(sorted(expected_df.columns), axis=1)

        actual_df = actual_df.sort_values(
            by=[event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True)
        actual_df = actual_df.reindex(sorted(actual_df.columns), axis=1)

        assert_frame_equal(
            expected_df,
            actual_df,
        )

        feature_service_job = store.get_historical_features(
            entity_df=orders_df,
            features=customer_fs,
            full_feature_names=full_feature_names,
        )
        feature_service_df = feature_service_job.to_df()
        feature_service_df = feature_service_df.sort_values(
            by=[event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True)
        feature_service_df = feature_service_df.reindex(sorted(
            feature_service_df.columns),
                                                        axis=1)

        assert_frame_equal(expected_df, feature_service_df)
        store.teardown()