Exemplo n.º 1
0
    def create_data_source(
        self,
        df: pd.DataFrame,
        destination_name: str,
        suffix: Optional[str] = None,
        event_timestamp_column="ts",
        created_timestamp_column="created_ts",
        field_mapping: Dict[str, str] = None,
    ) -> DataSource:

        destination_name = self.get_prefixed_table_name(destination_name)

        aws_utils.upload_df_to_redshift(
            self.client,
            self.offline_store_config.cluster_id,
            self.offline_store_config.database,
            self.offline_store_config.user,
            self.s3,
            f"{self.offline_store_config.s3_staging_location}/copy/{destination_name}.parquet",
            self.offline_store_config.iam_role,
            destination_name,
            df,
        )

        self.tables.append(destination_name)

        return RedshiftSource(
            table=destination_name,
            event_timestamp_column=event_timestamp_column,
            created_timestamp_column=created_timestamp_column,
            date_partition_column="",
            field_mapping=field_mapping or {"ts_1": "ts"},
        )
def prep_redshift_fs_and_fv(
    source_type: str, ) -> Iterator[Tuple[FeatureStore, FeatureView]]:
    client = aws_utils.get_redshift_data_client("us-west-2")
    s3 = aws_utils.get_s3_resource("us-west-2")

    df = create_dataset()

    table_name = f"test_ingestion_{source_type}_correctness_{int(time.time_ns())}_{random.randint(1000, 9999)}"

    offline_store = RedshiftOfflineStoreConfig(
        cluster_id="feast-integration-tests",
        region="us-west-2",
        user="******",
        database="feast",
        s3_staging_location=
        "s3://feast-integration-tests/redshift/tests/ingestion",
        iam_role="arn:aws:iam::402087665549:role/redshift_s3_access_role",
    )

    aws_utils.upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{table_name}.parquet",
        offline_store.iam_role,
        table_name,
        df,
    )

    redshift_source = RedshiftSource(
        table=table_name if source_type == "table" else None,
        query=f"SELECT * FROM {table_name}"
        if source_type == "query" else None,
        event_timestamp_column="ts",
        created_timestamp_column="created_ts",
        date_partition_column="",
        field_mapping={
            "ts_1": "ts",
            "id": "driver_id"
        },
    )

    fv = driver_feature_view(redshift_source)
    e = Entity(
        name="driver",
        description="id for driver",
        join_key="driver_id",
        value_type=ValueType.INT32,
    )
    with tempfile.TemporaryDirectory(
    ) as repo_dir_name, tempfile.TemporaryDirectory() as data_dir_name:
        config = RepoConfig(
            registry=str(Path(repo_dir_name) / "registry.db"),
            project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}",
            provider="local",
            online_store=SqliteOnlineStoreConfig(
                path=str(Path(data_dir_name) / "online_store.db")),
            offline_store=offline_store,
        )
        fs = FeatureStore(config=config)
        fs.apply([fv, e])

        yield fs, fv

        fs.teardown()

    # Clean up the uploaded Redshift table
    aws_utils.execute_redshift_statement(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        f"DROP TABLE {table_name}",
    )
Exemplo n.º 3
0
    name="driver_id",
    # The join key of an entity describes the storage level field/column on which
    # features can be looked up. The join key is also used to join feature
    # tables/views when building feature vectors
    join_key="driver_id",
    # The storage level type for an entity
    value_type=ValueType.INT64,
)

# Indicates a data source from which feature values can be retrieved. Sources are queried when building training
# datasets or materializing features into an online store.
driver_stats_source = RedshiftSource(
    # The Redshift table where features can be found
    table="feast_driver_hourly_stats",
    # The event timestamp is used for point-in-time joins and for ensuring only
    # features within the TTL are returned
    event_timestamp_column="event_timestamp",
    # The (optional) created timestamp is used to ensure there are no duplicate
    # feature rows in the offline store or when building training datasets
    created_timestamp_column="created",
)

# Feature views are a grouping based on how features are stored in either the
# online or offline store.
driver_stats_fv = FeatureView(
    # The unique name of this feature view. Two feature views in a single
    # project cannot have the same name
    name="driver_hourly_stats",
    # The list of entities specifies the keys required for joining or looking
    # up features from this feature view. The reference provided in this field
    # correspond to the name of a defined entity (or entities)
    entities=["driver_id"],
Exemplo n.º 4
0
def test_historical_features_from_redshift_sources(provider_type,
                                                   infer_event_timestamp_col,
                                                   capsys, full_feature_names):
    client = aws_utils.get_redshift_data_client("us-west-2")
    s3 = aws_utils.get_s3_resource("us-west-2")

    offline_store = RedshiftOfflineStoreConfig(
        cluster_id="feast-integration-tests",
        region="us-west-2",
        user="******",
        database="feast",
        s3_staging_location=
        "s3://feast-integration-tests/redshift/tests/ingestion",
        iam_role="arn:aws:iam::402087665549:role/redshift_s3_access_role",
    )

    start_date = datetime.now().replace(microsecond=0, second=0, minute=0)
    (
        customer_entities,
        driver_entities,
        end_date,
        orders_df,
        start_date,
    ) = generate_entities(start_date, infer_event_timestamp_col)

    redshift_table_prefix = (
        f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}"
    )

    # Stage orders_df to Redshift
    table_name = f"{redshift_table_prefix}_orders"
    entity_df_query = f"SELECT * FROM {table_name}"
    orders_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{table_name}.parquet",
        offline_store.iam_role,
        table_name,
        orders_df,
    )

    # Stage driver_df to Redshift
    driver_df = driver_data.create_driver_hourly_stats_df(
        driver_entities, start_date, end_date)
    driver_table_name = f"{redshift_table_prefix}_driver_hourly"
    driver_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{driver_table_name}.parquet",
        offline_store.iam_role,
        driver_table_name,
        driver_df,
    )

    # Stage customer_df to Redshift
    customer_df = driver_data.create_customer_daily_profile_df(
        customer_entities, start_date, end_date)
    customer_table_name = f"{redshift_table_prefix}_customer_profile"
    customer_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{customer_table_name}.parquet",
        offline_store.iam_role,
        customer_table_name,
        customer_df,
    )

    with orders_context, driver_context, customer_context, TemporaryDirectory(
    ) as temp_dir:
        driver_source = RedshiftSource(
            table=driver_table_name,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        driver_fv = create_driver_hourly_stats_feature_view(driver_source)

        customer_source = RedshiftSource(
            table=customer_table_name,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        customer_fv = create_customer_daily_profile_feature_view(
            customer_source)

        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        customer = Entity(name="customer_id", value_type=ValueType.INT64)

        if provider_type == "local":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="default",
                provider="local",
                online_store=SqliteOnlineStoreConfig(path=os.path.join(
                    temp_dir, "online_store.db"), ),
                offline_store=offline_store,
            ))
        elif provider_type == "aws":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="".join(
                    random.choices(string.ascii_uppercase + string.digits,
                                   k=10)),
                provider="aws",
                online_store=DynamoDBOnlineStoreConfig(region="us-west-2"),
                offline_store=offline_store,
            ))
        else:
            raise Exception(
                "Invalid provider used as part of test configuration")

        store.apply([driver, customer, driver_fv, customer_fv])

        try:
            event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               in orders_df.columns else "e_ts")
            expected_df = get_expected_training_df(
                customer_df,
                customer_fv,
                driver_df,
                driver_fv,
                orders_df,
                event_timestamp,
                full_feature_names,
            )

            job_from_sql = store.get_historical_features(
                entity_df=entity_df_query,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            start_time = datetime.utcnow()
            actual_df_from_sql_entities = job_from_sql.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_sql_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_sql_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_sql_entities = job_from_sql.to_arrow()
            assert_frame_equal(
                actual_df_from_sql_entities.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                table_from_sql_entities.to_pandas().sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
            )

            timestamp_column = ("e_ts" if infer_event_timestamp_col else
                                DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL)

            entity_df_query_with_invalid_join_key = (
                f"select order_id, driver_id, customer_id as customer, "
                f"order_is_success, {timestamp_column} FROM {table_name}")
            # Rename the join key; this should now raise an error.
            assertpy.assert_that(
                store.get_historical_features(
                    entity_df=entity_df_query_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                ).to_df).raises(errors.FeastEntityDFMissingColumnsError
                                ).when_called_with()

            job_from_df = store.get_historical_features(
                entity_df=orders_df,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            # Rename the join key; this should now raise an error.
            orders_df_with_invalid_join_key = orders_df.rename(
                {"customer_id": "customer"}, axis="columns")
            assertpy.assert_that(
                store.get_historical_features(
                    entity_df=orders_df_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                ).to_df).raises(errors.FeastEntityDFMissingColumnsError
                                ).when_called_with()

            start_time = datetime.utcnow()
            actual_df_from_df_entities = job_from_df.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"Time to execute job_from_df.to_df() = '{(end_time - start_time)}'\n"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_df_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_df_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_df_entities = job_from_df.to_arrow()
            assert_frame_equal(
                actual_df_from_df_entities.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                table_from_df_entities.to_pandas().sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
            )
        finally:
            store.teardown()