Exemplo n.º 1
0
def test_automatically_finds_variables(df_vartypes):
    # test case 1: automatically select variables
    transformer = BoxCoxTransformer(variables=None)
    X = transformer.fit_transform(df_vartypes)

    # expected output
    transf_df = df_vartypes.copy()
    transf_df["Age"] = [9.78731, 10.1666, 9.40189, 9.0099]
    transf_df["Marks"] = [-0.101687, -0.207092, -0.316843, -0.431788]

    # test init params
    assert transformer.variables is None
    # test fit attr
    assert transformer.variables_ == ["Age", "Marks"]
    assert transformer.n_features_in_ == 5
    # test transform output
    pd.testing.assert_frame_equal(X, transf_df)

    # test inverse_transform
    Xit = transformer.inverse_transform(X)

    # convert numbers to original format.
    Xit["Age"] = Xit["Age"].round().astype("int64")
    Xit["Marks"] = Xit["Marks"].round(1)

    # test
    pd.testing.assert_frame_equal(Xit, df_vartypes)
Exemplo n.º 2
0
def test_error_if_df_contains_negative_values(df_vartypes):
    # test error when data contains negative values
    df_neg = df_vartypes.copy()
    df_neg.loc[1, "Age"] = -1

    # test case 4: when variable contains negative value, fit
    with pytest.raises(ValueError):
        transformer = BoxCoxTransformer()
        transformer.fit(df_neg)

    # test case 5: when variable contains negative value, transform
    with pytest.raises(ValueError):
        transformer = BoxCoxTransformer()
        transformer.fit(df_vartypes)
        transformer.transform(df_neg)
Exemplo n.º 3
0
def test_automatically_finds_variables(df_vartypes):
    # test case 1: automatically select variables
    transformer = BoxCoxTransformer(variables=None)
    X = transformer.fit_transform(df_vartypes)

    # expected output
    transf_df = df_vartypes.copy()
    transf_df["Age"] = [9.78731, 10.1666, 9.40189, 9.0099]
    transf_df["Marks"] = [-0.101687, -0.207092, -0.316843, -0.431788]

    # test init params
    assert transformer.variables == ["Age", "Marks"]
    # test fit attr
    assert transformer.input_shape_ == (4, 5)
    # test transform output
    pd.testing.assert_frame_equal(X, transf_df)
Exemplo n.º 4
0
def test_non_fitted_error(df_vartypes):
    with pytest.raises(NotFittedError):
        transformer = BoxCoxTransformer()
        transformer.transform(df_vartypes)
Exemplo n.º 5
0
def test_transform_raises_error_if_df_contains_na(df_vartypes, df_na):
    # test case 3: when dataset contains na, transform method
    with pytest.raises(ValueError):
        transformer = BoxCoxTransformer()
        transformer.fit(df_vartypes)
        transformer.transform(df_na[["Name", "City", "Age", "Marks", "dob"]])
Exemplo n.º 6
0
def test_fit_raises_error_if_df_contains_na(df_na):
    # test case 2: when dataset contains na, fit method
    with pytest.raises(ValueError):
        transformer = BoxCoxTransformer()
        transformer.fit(df_na)
Exemplo n.º 7
0
import pytest
from sklearn.utils.estimator_checks import check_estimator

from feature_engine.transformation import (
    BoxCoxTransformer,
    LogTransformer,
    PowerTransformer,
    ReciprocalTransformer,
    YeoJohnsonTransformer,
)


@pytest.mark.parametrize(
    "Estimator",
    [
        BoxCoxTransformer(),
        LogTransformer(),
        PowerTransformer(),
        ReciprocalTransformer(),
        YeoJohnsonTransformer(),
    ],
)
def test_all_transformers(Estimator):
    return check_estimator(Estimator)