Exemplo n.º 1
0
Arquivo: main2.py Projeto: hanwiz/pris
        #out = reduce_noise(data,noise)
        #ns = fil.bandpass_filter(data,bandpass)
        try:
            p, freq, b = hmn.psddetectionresults(data)
        except IndexError:
            pass
            b = False
        b = True

        if b:
            fs = 44100  #force 44100 sample rate to prediction
            #mfcc, chroma, mel, spect, tonnetz = fex.extract_feature(ns,fs)#ns changed to raw data
            mfcc, chroma, mel, spect, tonnetz = fex.extract_feature(
                data, fs)  #ns changed to raw data
            #a,e,k = lpg.lpc(ns,10)
            mfcc_test = par.get_parsed_mfccdata(mfcc, chroma, mel, spect,
                                                tonnetz)
            #lpc_test = par.get_parsed_lpcdata(a,k,freq)
            x1 = clf.predict(mfcc_test)
            #x02 = clm.predict(mfcc_test)
            #x1 = ((x01[0]+x01[0])/2)
            #x2 = clf1.predict(lpc_test)
            print("Drone at %s" % dist_prediction_label(int(x1)))
            log.insertdf(int(x1), str(datetime.datetime.now())[:-7])
            print(x1)
            output = log.get_result()
            '''-----------uncomment if you want to save logs-----------------'''
            #log.logdf(sys.argv[1],x01[0],x02[0],str(datetime.datetime.now())[:-7])
            '''---------------------------------------------------------------'''

            if True:  #i > 9:
                print(int(output['Label']))
Exemplo n.º 2
0
reccount = 0
recdata = np.array([],dtype="float32")
basename = "drone"
labels=[]
"""save server recodings in assets folder"""
for root, dirs, files in os.walk("assets"):
    for file in files:
        if file.endswith(".wav"):
            data, fs = librosa.load(os.path.join(root, file))
            tests = np.split(data, 10)
            for test in tests:
                fs = 44100
                ns = fil.bandpass_filter(test,bandpass)
                mfcc, chroma, mel, spect, tonnetz = fex.extract_feature(ns,fs)
                mfcc1, chroma1, mel1, spect1, tonnetz1 = fex.extract_feature(test,fs)
                #a,e,k = lpg.lpc(ns,10)
                mfcc_test = par.get_parsed_mfccdata(mfcc, chroma,mel,spect,tonnetz)
                mfcc_test1 = par.get_parsed_mfccdata(mfcc1, chroma1,mel1,spect1,tonnetz1)
                #lpc_test = par.get_parsed_lpcdata(a,k,freq)
                x1 = clf.predict(mfcc_test)
                x11 = clf.predict(mfcc_test1)
                label = dist_prediction_label(int(x1))
                label1 = dist_prediction_label(int(x11))
                labels.append([i,file,label,label1])
                i+=1

import pandas as pd
df = pd.DataFrame(labels)
df.columns=['idx','filename','labelwithfilter','labelwithrawdata']
df
df.to_csv(r'servertest.csv')