def run(cross=True, verbose=False, xml="../xml/RTE2_dev.xml", pre_processec_xml="../xml/RTE2_dev.preprocessed.xml"): learning_data="learningdata.tab" # the data features. extracted from an earlier run of features. filename = "results_part3.txt" clean_file(filename) if cross: features.run(xml, pre_processec_xml) # extracts the features data = orange.ExampleTable(learning_data) l = orange.BayesLearner(data) if cross: if verbose: print "result: ", validation(data) for item in data: if item.getclass() != l(item): print '\033[1;41m' print item, l(item), print '\033[1;m' print else: print item, l(item) else: print "result: ", validation(data) else: file = open(filename, "a") file.write("ranked: no\n") if file: for item in data: s = str(item['id']) +" "+ str(l(item)) file.write(s+"\n") else: print "Error opening file" file.close() print "finished writing to results_part3" #run(True, False, "../xml/blind-test-data.xml") # runs the learning #run(False) # runs the writing to results file.
if cfg.quick == True: g.run(cfg.name, quick = True) else: g.run(cfg.name) if cfg.roc == True: import roccurves as rc if cfg.quick == True: rc.run(cfg.name + str(cfg.maxdepth), quick = True) else: rc.run(cfg.name + str(cfg.maxdepth)) if cfg.features == True: import features as f if cfg.quick == True: f.run(cfg.name + str(cfg.maxdepth), quick = True) else: f.run(cfg.name + str(cfg.maxdepth)) if cfg.checksignal == True: import checksignal as cs if cfg.quick == True: cs.run(cfg.name + str(cfg.maxdepth), quick = True) else: cs.run(cfg.name + str(cfg.maxdepth)) if cfg.crossvalidation == True: import crossvalidation as cv if cfg.quick == True: cv.run(cfg.name + str(cfg.maxdepth), quick = True) else: