Exemplo n.º 1
0
def initial_setup(boundary, currents, **kwargs):
    '''Start femm and setup problem definition and set boundary condition.'''
    if kwargs.get('hide') is True:
        femm.openfemm(1)
        femm.main_minimize()
    else:
        femm.openfemm()

    # newdocument(doctype)
    # From manual: Creates a new preprocessor document and opens up a new
    # preprocessor window. Specify doctype to be 0 for a magnetics problem, 1
    # for an electrostatics problem, 2 for a heat flow problem, or 3 for a
    # current flow problem. An alternative syntax for this command is
    # create(doctype)
    femm.newdocument(0)

    # ei probdef(units,type,precision,(depth),(minangle))
    # From manual: changes the problem definition. The units parameter
    # specifies the units used for measuring length in the problem domain.
    # Valid "units" entries are "inches", "millimeters", "centimeters", "mils",
    # "meters, and "micrometers". Set problemtype to "planar" for a 2-D planar
    # problem, or to "axi" for an axisymmetric problem. The precision parameter
    # dictates the precision required by the solver. For example, entering
    # 1.E-8 requires the RMS of the residual to be less than 10^-8. A fourth
    # parameter, representing the depth of the problem in the into-thepage
    # direction for 2-D planar problems, can also be specified for planar
    # problems. A sixth parameter represents the minimum angle constraint sent
    # to the mesh generator.
    if 'frequency' in kwargs:
        freq = kwargs['frequency']
    else:
        freq = 6.78e6
    if 'precision' in kwargs:
        precision = kwargs['precision']
    else:
        precision = 5e-9
    if 'min_angle' in kwargs:
        min_angle = kwargs['min_angle']
    else:
        min_angle = 30
    femm.mi_probdef(freq, 'millimeters', 'axi', precision, 50, min_angle)

    # Circuit parameters
    # mi addcircprop("circuitname", i, circuittype)
    # From manual: adds a new circuit property with name "circuitname" with a
    # prescribed current, i. The circuittype parameter is 0 for a
    # parallel-connected circuit and 1 for a series-connected circuit.

    # The currents in the primary and secondary circuits are set
    I1, I2 = currents
    femm.mi_addcircprop('phase_prim', I1, 1)
    femm.mi_addcircprop('phase_sec', I2, 1)

    # Add materials properties used in the simulation
    # mi addmaterial("materialname", mu x, mu y, H c, J, Cduct, Lam d,
    # Phi hmax, lam fill, LamType, Phi hx, Phi hy,NStrands,WireD)
    # From manual: adds a newmaterial with called "materialname" with the
    # material properties:
    # – mu x Relative permeability in the x- or r-direction.
    # – mu y Relative permeability in the y- or z-direction.
    # – H c Permanent magnet coercivity in Amps/Meter.
    # – J Real Applied source current density in Amps/mm2.
    # – Cduct Electrical conductivity of the material in MS/m.
    # – Lam d Lamination thickness in millimeters.
    # – Phi hmax Hysteresis lag angle in degrees, used for nonlinear BH curves.
    # – Lam fill Fraction of the volume occupied per lamination that is
    # actually filled with iron (Note that this parameter defaults to 1 the
    # femm preprocessor dialog box because, by default, iron completely fills
    # the volume)
    # – Lamtype Set to
    # ? 0 – Not laminated or laminated in plane
    # ? 1 – laminated x or r
    # ? 2 – laminated y or z
    # ? 3 – Magnet wire
    # ? 4 – Plain stranded wire
    # ? 5 – Litz wire
    # ? 6 – Square wire
    # – Phi hx Hysteresis lag in degrees in the x-direction for linear problems
    # – Phi hy Hysteresis lag in degrees in the y-direction for linear problems
    # – NStrands Number of strands in the wire build. Should be 1 for Magnet or
    # Square wire.
    # – WireD Diameter of each wire constituent strand in millimeters.
    femm.mi_addmaterial('air', 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
    femm.mi_addmaterial('fr4', 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
    femm.mi_addmaterial('copper', 1, 1, 0, 0, 58, 0, 0, 0, 0, 0, 0)
    femm.mi_addmaterial('polysterimide', 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
    femm.mi_addmaterial('teflon', 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
    femm.mi_addmaterial('silgel', 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
    if 'material' in kwargs:
        for m in kwargs['material']:
            femm.mi_addmaterial(*m)

    # Boundary condition
    # ei makeABC(n,R,x,y,bc)
    # From manual: creates a series of circular shells that emulate the
    # impedance of an unbounded domain (i.e. an Improvised Asymptotic Boundary
    # Condition). The n parameter contains the number of shells to be used
    # (should be between 1 and 10), R is the radius of the solution domain, and
    # (x,y) denotes the center of the solution domain. The bc parameter should
    # be specified as 0 for a Dirichlet outer edge or 1 for a Neumann outer
    # edge. If the function is called without all the parameters, the function
    # makes up reasonable values for the missing parameters.
    femm.mi_makeABC(7, boundary, 0, 0, 0)
Exemplo n.º 2
0
def initial_setup(limite_externe, voltage_high, **kwargs):
    '''Start femm and setup problem definition and set boundary condition.'''
    if kwargs.get('hide') is True:
        femm.openfemm(1)
        femm.main_minimize()
    else:
        femm.openfemm()

    # newdocument(doctype)
    # From manual: Creates a new preprocessor document and opens up a new
    # preprocessor window. Specify doctype to be 0 for a magnetics problem, 1
    # for an electrostatics problem, 2 for a heat flow problem, or 3 for a
    # current flow problem. An alternative syntax for this command is
    # create(doctype)
    femm.newdocument(1)

    # ei probdef(units,type,precision,(depth),(minangle))
    # From manual: changes the problem definition. The units parameter
    # specifies the units used for measuring length in the problem domain.
    # Valid "units" entries are "inches", "millimeters", "centimeters", "mils",
    # "meters, and "micrometers". Set problemtype to "planar" for a 2-D planar
    # problem, or to "axi" for an axisymmetric problem. The precision parameter
    # dictates the precision required by the solver. For example, entering
    # 1.E-8 requires the RMS of the residual to be less than 10^-8. A fourth
    # parameter, representing the depth of the problem in the into-thepage
    # direction for 2-D planar problems, can also be specified for planar
    # problems. A sixth parameter represents the minimum angle constraint sent
    # to the mesh generator.
    if 'precision' in kwargs:
        precision = kwargs['precision']
    else:
        precision = 1e-9
    if 'min_angle' in kwargs:
        min_angle = kwargs['min_angle']
    else:
        min_angle = 30
    femm.ei_probdef('millimeters', 'axi', precision, 100, min_angle)

    # Circuit parameters
    # From manual: ei_addconductorprop("conductorname", Vc, qc, conductortype)
    # adds a new conductor property with name "conductorname" with either a
    # prescribed voltage or a prescribed total charge. Set the unused property
    # to zero. The conductortype parameter is 0 for prescribed charge and 1 for
    # prescribed voltage
    femm.ei_addconductorprop('high', voltage_high, 0, 1)
    femm.ei_addconductorprop('zero', 0, 0, 1)

    # Add materials properties used in the simulation
    # ei_addmaterial(’matname’, ex, ey, qv)
    # From manual: adds a new material with called ’matname’ with the material
    # properties:
    # ex Relative permittivity in the x- or r-direction.
    # ey Relative permittivity in the y- or z-direction.
    # qv Volume charge density in units of C/m3
    femm.ei_addmaterial('air', 1, 1, 0)
    femm.ei_addmaterial('fr4', 4.4, 4.4, 0)
    femm.ei_addmaterial('polysterimide', 3.5, 3.5, 0)
    femm.ei_addmaterial('teflon', 2.1, 2.1, 0)
    femm.ei_addmaterial('silgel', 2.7, 2.7, 0)
    femm.ei_addmaterial('midel', 3.15, 3.15, 0)
    if 'material' in kwargs:
        for m in kwargs['material']:
            femm.ei_addmaterial(*m)

    # Boundary conditions
    # ei makeABC(n,R,x,y,bc)
    # From manual: creates a series of circular shells that emulate the
    # impedance of an unbounded domain (i.e. an Improvised Asymptotic Boundary
    # Condition). The n parameter contains the number of shells to be used
    # (should be between 1 and 10), R is the radius of the solution domain, and
    # (x,y) denotes the center of the solution domain. The bc parameter should
    # be specified as 0 for a Dirichlet outer edge or 1 for a Neumann outer
    # edge. If the function is called without all the parameters, the function
    # makes up reasonable values for the missing parameters.
    femm.ei_makeABC(7, limite_externe, 0, 0, 0)
Exemplo n.º 3
0
def draw_FEMM(
    output,
    is_mmfr,
    is_mmfs,
    sym,
    is_antiper,
    type_calc_leakage,
    is_remove_vent=False,
    is_remove_slotS=False,
    is_remove_slotR=False,
    is_stator_linear_BH=False,
    is_rotor_linear_BH=False,
    kgeo_fineness=1,
    kmesh_fineness=1,
    user_FEMM_dict={},
    path_save="FEMM_model.fem",
    is_sliding_band=True,
):
    """Draws and assigns the property of the machine in FEMM
    
    Parameters
    ----------
    output : Output
        Output object
    is_mmfr : bool
        1 to compute the rotor magnetomotive force / rotor
        magnetic field
    is_mmfs : bool
        1 to compute the stator magnetomotive force/stator
        magnetic field
    type_calc_leakage : int
        0 no leakage calculation
        1 calculation using single slot
    is_remove_vent : bool
        True to remove the ventilation ducts in FEMM (Default value = False)
    is_remove_slotS : bool
        True to solve without slot effect on the Stator (Default value = False)
    is_remove_slotR : bool
        True to solve without slot effect on the Rotor (Default value = False)
    is_stator_linear_BH: bool
        1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    is_rotor_linear_BH: bool
        1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    kgeo_fineness : float
        global coefficient to adjust geometry fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    kmesh_fineness : float
        global coefficient to adjust mesh fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    sym : int
        the symmetry applied on the stator and the rotor (take into account antiperiodicity)
    is_antiper: bool
        To apply antiperiodicity boundary conditions

    Returns
    -------

    FEMM_dict : dict
        Dictionnary containing the main parameters of FEMM (including circuits and materials)
    """

    # Initialization from output for readibility
    BHs = output.geo.stator.BH_curve  # Stator B(H) curve
    BHr = output.geo.rotor.BH_curve  # Rotor B(H) curve
    Is = output.elec.Is  # Stator currents waveforms
    Ir = output.elec.Ir  # Rotor currents waveforms
    machine = output.simu.machine

    # Modifiy the machine to match the conditions
    machine = type(machine)(init_dict=machine.as_dict())
    if is_remove_slotR:  # Remove all slots on the rotor
        lam_dict = machine.rotor.as_dict()
        machine.rotor = Lamination(init_dict=lam_dict)
    if is_remove_slotS:  # Remove all slots on the stator
        lam_dict = machine.stator.as_dict()
        machine.stator = Lamination(init_dict=lam_dict)
    if is_remove_vent:  # Remove all ventilations
        machine.rotor.axial_vent = list()
        machine.stator.axial_vent = list()

    # Building geometry of the (modified) stator and the rotor
    surf_list = list()
    lam_ext = machine.get_lamination(is_internal=False)
    lam_int = machine.get_lamination(is_internal=True)
    # adding Internal Lamination surface
    surf_list.extend(lam_int.build_geometry(sym=sym))

    # adding the Airgap surface
    if is_sliding_band:
        surf_list.extend(
            get_sliding_band(
                sym=sym,
                lam_int=output.simu.machine.get_lamination(True),
                lam_ext=output.simu.machine.get_lamination(False),
            )
        )
    else:
        surf_list.extend(
            get_airgap_surface(
                lam_int=output.simu.machine.get_lamination(True),
                lam_ext=output.simu.machine.get_lamination(False),
            )
        )

    # adding External Lamination surface
    surf_list.extend(lam_ext.build_geometry(sym=sym))

    # Computing parameter (element size, arcspan...) needed to define the simulation
    FEMM_dict = comp_FEMM_dict(
        machine, kgeo_fineness, kmesh_fineness, type_calc_leakage
    )
    FEMM_dict.update(user_FEMM_dict)  # Overwrite some values if needed

    # The package must be initialized with the openfemm command.
    femm.openfemm()

    # We need to create a new Magnetostatics document to work on.
    femm.newdocument(0)

    # Minimize the main window for faster geometry creation.
    femm.main_minimize()

    # defining the problem
    femm.mi_probdef(0, "meters", FEMM_dict["pbtype"], FEMM_dict["precision"])

    # Creation of all the materials and circuit in FEMM
    prop_dict, materials, circuits = create_FEMM_materials(
        machine,
        surf_list,
        Is,
        Ir,
        BHs,
        BHr,
        is_mmfs,
        is_mmfr,
        is_stator_linear_BH,
        is_rotor_linear_BH,
        is_eddies,
        j_t0=0,
    )
    create_FEMM_boundary_conditions(sym=sym, is_antiper=is_antiper)

    # Draw and assign all the surfaces of the machine
    for surf in surf_list:
        label = surf.label
        # Get the correct element size and group according to the label
        mesh_dict = get_mesh_param(label, FEMM_dict)
        surf.draw_FEMM(
            nodeprop="None",
            maxseg=FEMM_dict["arcspan"],  # max span of arc element in degrees
            propname="None",
            elementsize=mesh_dict["element_size"],
            automesh=mesh_dict["automesh"],
            hide=False,
            group=mesh_dict["group"],
        )
        assign_FEMM_surface(
            surf, prop_dict[label], mesh_dict, machine.rotor, machine.stator
        )

    femm.mi_zoomnatural()  # Zoom out
    femm.mi_probdef(
        FEMM_dict["freqpb"],
        "meters",
        FEMM_dict["pbtype"],
        FEMM_dict["precision"],
        FEMM_dict["Lfemm"],
        FEMM_dict["minangle"],
        FEMM_dict["acsolver"],
    )
    femm.smartmesh(FEMM_dict["smart_mesh"])
    femm.mi_saveas(path_save)  # Save
    # femm.mi_close()

    FEMM_dict["materials"] = materials
    FEMM_dict["circuits"] = circuits

    return FEMM_dict
Exemplo n.º 4
0
def draw_FEMM(
    output,
    is_mmfr,
    is_mmfs,
    sym,
    is_antiper,
    type_calc_leakage,
    is_remove_vent=False,
    is_remove_slotS=False,
    is_remove_slotR=False,
    type_BH_stator=0,
    type_BH_rotor=0,
    kgeo_fineness=1,
    kmesh_fineness=1,
    user_FEMM_dict={},
    path_save="FEMM_model.fem",
    is_sliding_band=True,
    transform_list=[],
    rotor_dxf=None,
    stator_dxf=None,
):
    """Draws and assigns the property of the machine in FEMM
    
    Parameters
    ----------
    output : Output
        Output object
    is_mmfr : bool
        1 to compute the rotor magnetomotive force / rotor
        magnetic field
    is_mmfs : bool
        1 to compute the stator magnetomotive force/stator
        magnetic field
    type_calc_leakage : int
        0 no leakage calculation
        1 calculation using single slot
    is_remove_vent : bool
        True to remove the ventilation ducts in FEMM (Default value = False)
    is_remove_slotS : bool
        True to solve without slot effect on the Stator (Default value = False)
    is_remove_slotR : bool
        True to solve without slot effect on the Rotor (Default value = False)
    type_BH_stator: int
        2 Infinite permeability, 1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    type_BH_rotor: bool
        2 Infinite permeability, 1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    kgeo_fineness : float
        global coefficient to adjust geometry fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    kmesh_fineness : float
        global coefficient to adjust mesh fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    sym : int
        the symmetry applied on the stator and the rotor (take into account antiperiodicity)
    is_antiper: bool
        To apply antiperiodicity boundary conditions
    rotor_dxf : DXFImport
        To use a dxf version of the rotor instead of build_geometry
    stator_dxf : DXFImport
        To use a dxf version of the stator instead of build_geometry

    Returns
    -------

    FEMM_dict : dict
        Dictionnary containing the main parameters of FEMM (including circuits and materials)
    """

    # Initialization from output for readibility
    BHs = output.geo.stator.BH_curve  # Stator B(H) curve
    BHr = output.geo.rotor.BH_curve  # Rotor B(H) curve
    Is = output.elec.Is  # Stator currents waveforms
    Ir = output.elec.Ir  # Rotor currents waveforms
    machine = output.simu.machine

    # Computing parameter (element size, arcspan...) needed to define the simulation
    FEMM_dict = comp_FEMM_dict(machine, kgeo_fineness, kmesh_fineness,
                               type_calc_leakage)
    FEMM_dict.update(user_FEMM_dict)  # Overwrite some values if needed

    # The package must be initialized with the openfemm command.
    try:
        femm.openfemm()
    except Exception as e:
        raise FEMMError(
            "ERROR: Unable to open FEMM, please check that FEMM is correctly installed\n"
            + str(e))

    # We need to create a new Magnetostatics document to work on.
    femm.newdocument(0)

    # Minimize the main window for faster geometry creation.
    femm.main_minimize()

    # defining the problem
    femm.mi_probdef(0, "meters", FEMM_dict["pbtype"], FEMM_dict["precision"])

    # Modifiy the machine to match the conditions
    machine = type(machine)(init_dict=machine.as_dict())
    if is_remove_slotR:  # Remove all slots on the rotor
        lam_dict = machine.rotor.as_dict()
        machine.rotor = Lamination(init_dict=lam_dict)
    if is_remove_slotS:  # Remove all slots on the stator
        lam_dict = machine.stator.as_dict()
        machine.stator = Lamination(init_dict=lam_dict)
    if is_remove_vent:  # Remove all ventilations
        machine.rotor.axial_vent = list()
        machine.stator.axial_vent = list()

    # Building geometry of the (modified) stator and the rotor
    surf_list = list()
    lam_list = machine.get_lam_list()
    lam_int = lam_list[0]
    lam_ext = lam_list[1]

    # Adding no_mesh for shaft if needed
    if lam_int.Rint > 0 and sym == 1:
        surf_list.append(
            Circle(point_ref=0, radius=lam_int.Rint, label="No_mesh"))

    # adding the Airgap surface
    if is_sliding_band:
        surf_list.extend(
            get_sliding_band(sym=sym, lam_int=lam_int, lam_ext=lam_ext))
    else:
        surf_list.extend(get_airgap_surface(lam_int=lam_int, lam_ext=lam_ext))

    # adding Both laminations surfaces (or import from DXF)
    if rotor_dxf is not None:
        femm.mi_readdxf(rotor_dxf.file_path)
        surf_list.extend(rotor_dxf.get_surfaces())
    else:
        surf_list.extend(machine.rotor.build_geometry(sym=sym))
    if stator_dxf is not None:
        femm.mi_readdxf(stator_dxf.file_path)
        surf_list.extend(stator_dxf.get_surfaces())
    else:
        surf_list.extend(machine.stator.build_geometry(sym=sym))

    # Applying user defined modifications
    for transfrom in transform_list:
        for surf in surf_list:
            if transfrom["label"] in surf.label and transfrom[
                    "type"] == "rotate":
                surf.rotate(transfrom["value"])
            elif transfrom["label"] in surf.label and transfrom[
                    "type"] == "translate":
                surf.translate(transfrom["value"])

    # Creation of all the materials and circuit in FEMM
    prop_dict, materials, circuits = create_FEMM_materials(
        machine,
        surf_list,
        Is,
        Ir,
        BHs,
        BHr,
        is_mmfs,
        is_mmfr,
        type_BH_stator,
        type_BH_rotor,
        is_eddies,
        j_t0=0,
    )
    create_FEMM_boundary_conditions(sym=sym, is_antiper=is_antiper)

    # Draw and assign all the surfaces of the machine
    for surf in surf_list:
        label = surf.label
        # Get the correct element size and group according to the label
        surf.draw_FEMM(
            nodeprop="None",
            maxseg=FEMM_dict["arcspan"],  # max span of arc element in degrees
            propname="None",
            FEMM_dict=FEMM_dict,
            hide=False,
        )
        assign_FEMM_surface(surf, prop_dict[label], FEMM_dict, machine.rotor,
                            machine.stator)

    # Apply BC for DXF import
    if rotor_dxf is not None:
        for BC in rotor_dxf.BC_list:
            if BC[1] is True:  # Select Arc
                femm.mi_selectarcsegment(BC[0].real, BC[0].imag)
                femm.mi_setarcsegmentprop(FEMM_dict["arcspan"], BC[2], False,
                                          None)
            else:  # Select Line
                femm.mi_selectsegment(BC[0].real, BC[0].imag)
                femm.mi_setsegmentprop(BC[2], None, None, False, None)
            femm.mi_clearselected()

    femm.mi_zoomnatural()  # Zoom out
    femm.mi_probdef(
        FEMM_dict["freqpb"],
        "meters",
        FEMM_dict["pbtype"],
        FEMM_dict["precision"],
        FEMM_dict["Lfemm"],
        FEMM_dict["minangle"],
        FEMM_dict["acsolver"],
    )
    femm.smartmesh(FEMM_dict["smart_mesh"])
    femm.mi_saveas(path_save)  # Save
    # femm.mi_close()

    FEMM_dict["materials"] = materials
    FEMM_dict["circuits"] = circuits

    return FEMM_dict