Exemplo n.º 1
0
def gen_rect_mesh(nx, ny, xmin, xmax, ymin, ymax, outfile, direction='right'):

    mesh = RectangleMesh(MPI.COMM_SELF,
                         Point(xmin, ymin),
                         Point(xmax, ymax),
                         nx, ny, direction)

    File(MPI.COMM_SELF, outfile) << mesh
Exemplo n.º 2
0
def get_geometry(domain_part):
    nx = 5
    ny = 10
    low_resolution = 5
    high_resolution = 5
    n_vertices = 20

    if domain_part is DomainPart.LEFT:
        nx = nx * 3
    elif domain_part is DomainPart.RIGHT:
        ny = ny * 2
    elif domain_part is DomainPart.CIRCULAR:
        n_vertices = n_vertices
    elif domain_part is DomainPart.RECTANGLE:
        n_vertices = n_vertices
    else:
        raise Exception("invalid domain_part: {}".format(domain_part))

    if domain_part is DomainPart.LEFT or domain_part is DomainPart.RIGHT:
        if domain_part is DomainPart.LEFT:
            p0 = Point(x_left, y_bottom)
            p1 = Point(x_coupling, y_top)
        elif domain_part is DomainPart.RIGHT:
            p0 = Point(x_coupling, y_bottom)
            p1 = Point(x_right, y_top)
        else:
            raise Exception("invalid control flow!")
        mesh = RectangleMesh(p0, p1, nx, ny)
        coupling_boundary = StraightBoundary()
        remaining_boundary = ExcludeStraightBoundary()

    elif domain_part is DomainPart.CIRCULAR or domain_part is DomainPart.RECTANGLE:
        p0 = Point(x_left, y_bottom)
        p1 = Point(x_right, y_top)
        whole_domain = mshr.Rectangle(p0, p1)
        if domain_part is DomainPart.CIRCULAR:
            circular_domain = mshr.Circle(midpoint, radius, n_vertices)
            mesh = mshr.generate_mesh(circular_domain, high_resolution, "cgal")
        elif domain_part is DomainPart.RECTANGLE:
            circular_domain = mshr.Circle(midpoint, radius, n_vertices)
            mesh = mshr.generate_mesh(whole_domain - circular_domain,
                                      low_resolution, "cgal")
        else:
            raise Exception("invalid control flow!")
        coupling_boundary = CircleBoundary()
        remaining_boundary = ExcludeCircleBoundary()

    else:
        raise Exception("invalid control flow!")

    return mesh, coupling_boundary, remaining_boundary
Exemplo n.º 3
0
def reference_data(H, L, mesh_type, mesh_size, padding=0.07):
    g = kepler_jacobi_metric(c=H)
    (q0, p0, _, _, (c, a, b), _, _) = exact_kepler(H, L)
    if mesh_type == 'uniform':
        # uniform rectangular mesh containing the orbit
        mesh = RectangleMesh(Point(c[0] - a - padding, c[1] - b - padding),
                             Point(c[0] + a + padding, c[1] + b + padding),
                             mesh_size, mesh_size)
    else:
        # unstructured annular mesh containing the orbit
        ell_out = Ellipse(Point(c), a + padding, b + padding)
        ell_in = Ellipse(Point(c), a - padding, b - padding)
        domain = ell_out - ell_in
        mesh = generate_mesh(domain, mesh_size)
    return (q0, p0, g, mesh)
Exemplo n.º 4
0
def get_geometry(domain_part):
    nx = ny = 9

    if domain_part is DomainPart.LEFT:
        p0 = Point(x_left, y_bottom)
        p1 = Point(x_coupling, y_top)
    elif domain_part is DomainPart.RIGHT:
        p0 = Point(x_coupling, y_bottom)
        p1 = Point(x_right, y_top)
    else:
        raise Exception("invalid domain_part: {}".format(domain_part))

    mesh = RectangleMesh(p0, p1, nx, ny, diagonal="left")
    coupling_boundary = StraightBoundary()
    remaining_boundary = ExcludeStraightBoundary()

    return mesh, coupling_boundary, remaining_boundary
Exemplo n.º 5
0
def box_mesh(width=1.0, dim=1, nelements=8):
    """Make a rectangular mesh of dimension 1-3

    Parameters:
    width=1.0: width (also length and height) of space
    dim=1: 1, 2, or 3, dimension of space
    nelements=8: division of space into elements
    """
    if dim == 1:
        return IntervalMesh(nelements, 0.0, width)
    elif dim == 2:
        return RectangleMesh(Point(np.array([0.0, 0.0], dtype=float)),
                             Point(np.array([width, width], dtype=float)),
                             nelements, nelements)
    elif dim == 3:
        return BoxMesh(Point(np.array([0.0, 0.0, 0.0], dtype=float)),
                       Point(np.array([width, width, width], dtype=float)),
                       nelements, nelements, nelements)
    else:
        raise KSDGException("Only dimensions 1, 2, 3 supported.")
Exemplo n.º 6
0
# Geometry and material properties
dim = 2  # number of dimensions
H = 1
W = 0.1
rho = 3000
E = 4000000
nu = 0.3

mu = Constant(E / (2.0 * (1.0 + nu)))

lambda_ = Constant(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

# create Mesh
n_x_Direction = 4
n_y_Direction = 26
mesh = RectangleMesh(Point(-W / 2, 0), Point(W / 2, H), n_x_Direction,
                     n_y_Direction)

h = Constant(H / n_y_Direction)

# create Function Space
V = VectorFunctionSpace(mesh, 'P', 2)

# BCs
tol = 1E-14

# Trial and Test Functions
du = TrialFunction(V)
v = TestFunction(V)

u_np1 = Function(V)
saved_u_old = Function(V)
Exemplo n.º 7
0
from cslvr    import HybridModel, MomentumHybrid
from fenics   import Point, RectangleMesh, Expression, sqrt, pi

alpha = 0.1 * pi / 180 
L     = 10000

p1    = Point(0.0, 0.0)
p2    = Point(L,   L)
mesh  = RectangleMesh(p1, p2, 25, 25)

model = HybridModel(mesh, out_dir = './ISMIP_HOM_C_hybrid_results/',
                    use_periodic = True)

surface = Expression('- x[0] * tan(alpha)', alpha=alpha, 
                     element=model.Q.ufl_element())
bed     = Expression('- x[0] * tan(alpha) - 1000.0', alpha=alpha, 
                     element=model.Q.ufl_element())
beta    = Expression('1000 + 1000 * sin(2*pi*x[0]/L) * sin(2*pi*x[1]/L)',
                     alpha=alpha, L=L, element=model.Q.ufl_element())

model.init_S(surface)
model.init_B(bed)
model.init_mask(1.0)  # all grounded
model.init_beta(beta)
model.init_A(1e-16)

mom = MomentumHybrid(model)
mom.solve()

model.save_xdmf(model.U3_s, 'U_S')
Exemplo n.º 8
0
def build_mesh():
    mesh = RectangleMesh(p0=Point(-0.5, -0.5),
                         p1=Point(0.5, 0.5),
                         nx=nx,
                         ny=nx)
    return mesh
Exemplo n.º 9
0
# Numerical properties
tol = 1E-14

# Beam material properties
rho = 1000  # density
E = 5600000.0  # Young's modulus
nu = 0.4  # Poisson's ratio
lambda_ = Constant(E * nu / ((1.0 + nu) *
                             (1.0 - 2.0 * nu)))  # first Lame constant
mu = Constant(E / (2.0 * (1.0 + nu)))  # second Lame constant

# create Mesh
n_x_Direction = 20  # DoFs in x direction
n_y_Direction = 4  # DoFs in y direction
mesh = RectangleMesh(Point(x_left, y_bottom), Point(x_right, y_top),
                     n_x_Direction, n_y_Direction)

# create Function Space
V = VectorFunctionSpace(mesh, 'P', 2)

# Trial and Test Functions
du = TrialFunction(V)
v = TestFunction(V)

# displacement fields
u_np1 = Function(V)
saved_u_old = Function(V)

# function known from previous timestep
u_n = Function(V)
v_n = Function(V)
Exemplo n.º 10
0
from fenics import File

if __name__ == '__main__':
    fenics.set_log_level(30)  # only display warnings or errors

    # here we solve a heat diffusion equation over time:
    # we use a finite difference scheme in time (backward Euler) and a variational approach in space
    # namely we iterate over (small) timesteps, each time solving a Poisson equation via finite elements

    T = 2.0  # final time
    num_steps = 50  # number of time steps
    dt = T / num_steps  # time step size

    # Create mesh and define function space
    nx = ny = 30
    mesh = RectangleMesh(Point(-2, -2), Point(2, 2), nx, ny)
    V = FunctionSpace(mesh, 'P', 1)

    # Define boundary condition
    def boundary(x, on_boundary):
        return on_boundary

    bc = DirichletBC(V, Constant(0), boundary)  # null Dirichlet conditions

    # Define initial value
    u_0 = Expression('exp(-a*pow(x[0], 2) - a*pow(x[1], 2))', degree=2, a=5)
    # the initial condition here is a "gaussian hill" of parameter alpha centered in the origin
    u_n = interpolate(u_0, V)
    # since we will be using iteratively the solution from the previous time step to compute the one
    # at the current time step, we need to convert the initial datum's expression to a Function object:
    # there are two ways to do this: either via the project() method or the interpolate() method;
Exemplo n.º 11
0
  def __init__(self, direc, files, flip=False, mesh=None, gen_space=True, 
               zero_edge=False, bool_data=False, req_dg=False):
    """
    The following data are used to initialize the class :
    
      direc     : Set the directory containing the input files. 
      files     : Tuple of file names.  All files are scanned for rows or 
                  columns of nans. Assume all files have the same extents.
      flip      : flip the data over the x-axis?
      mesh      : FEniCS mesh if there is one already created.
      zero_edge : Make edges of domain -0.002?
      bool_data : Convert data to boolean?
      req_dg    : Some field may require DG space?
    
    Based on thickness extents, create a rectangular mesh object.
    Also define the function space as continious galerkin, order 1.
    """
    self.directory  = direc
    self.data       = {}        # dictionary of converted matlab data
    self.rem_nans   = False
    self.chg_proj   = False     # change to other projection flag
    
    first = True  # initialize domain by first file's extents

    if direc == None and type(files) == dict:
      self.name = files.pop('dataset')
    elif direc != None:
      self.name = direc
    
    print "::: creating %s DataInput object :::" % self.name
    
    # process the data files :
    for fn in files:
     
      if direc == None and type(files) == dict:
        d_dict = files[fn]
    
      
      elif direc != None:
        d_dict = loadmat(direc + fn)
        d_dict['projection']     = d_dict['projection'][0]
        d_dict['standard lat']   = d_dict['standard lat'][0]
        d_dict['standard lon']   = d_dict['standard lon'][0]
        d_dict['lat true scale'] = d_dict['lat true scale'][0]
      
      d = d_dict["map_data"]
     
      # initialize extents :
      if first: 
        self.ny,self.nx = shape(d_dict['map_data'])
        self.x_min      = float(d_dict['map_western_edge'])
        self.x_max      = float(d_dict['map_eastern_edge'])
        self.y_min      = float(d_dict['map_southern_edge'])
        self.y_max      = float(d_dict['map_northern_edge'])
        self.proj       = str(d_dict['projection'])
        self.lat_0      = str(d_dict['standard lat'])
        self.lon_0      = str(d_dict['standard lon'])
        self.lat_ts     = str(d_dict['lat true scale'])
        self.x          = linspace(self.x_min, self.x_max, self.nx)
        self.y          = linspace(self.y_min, self.y_max, self.ny)
        self.good_x     = array(ones(len(self.x)), dtype=bool)      # no NaNs
        self.good_y     = array(ones(len(self.y)), dtype=bool)      # no NaNs
        first           = False
  
      # identify, but not remove the NaNs : 
      self.identify_nans(d, fn)
     
      # make edges all zero for interpolation of interior regions :
      if zero_edge:
        d[:,0] = d[:,-1] = d[0,:] = d[-1,:] = -0.002
        d[:,1] = d[:,-2] = d[1,:] = d[-2,:] = -0.002

      # convert to boolean : 
      if bool_data: d[d > 0] = 1
      
      # reflect over the x-axis :
      if flip: d = d[::-1, :]
      
      # add to the dictionary of arrays :
      self.data[fn.split('.')[0]] = d

    # remove un-needed rows/cols from data: 
    if self.rem_nans:
      self.remove_nans()
    
    if gen_space:
      # define a FEniCS Rectangle over the domain :
      if mesh == None:
        self.mesh = RectangleMesh(self.x_min, self.y_min, 
                                  self.x_max, self.y_max,
                                  self.nx,    self.ny)
      else:
        self.mesh = mesh
      
      # define the function space of the problem :
      self.func_space      = FunctionSpace(self.mesh, "CG", 1)
      
      # if DG space is needed :
      if req_dg:
        self.func_space_dg = FunctionSpace(self.mesh, "DG", 1)
    
    # create projection : 
    proj =   " +proj="   + self.proj \
           + " +lat_0="  + self.lat_0 \
           + " +lat_ts=" + self.lat_ts \
           + " +lon_0="  + self.lon_0 \
           + " +k=1 +x_0=0 +y_0=0 +no_defs +a=6378137 +rf=298.257223563" \
           + " +towgs84=0.000,0.000,0.000 +to_meter=1"
    self.p = Proj(proj)
Exemplo n.º 12
0
  def __init__(self, mf_obj, flip=False, mesh=None, gen_space=True,
               zero_edge=False, bool_data=False, req_dg=False):
    """
    The following data are used to initialize the class :

      mf_obj    : mesh factory dictionary.
      flip      : flip the data over the x-axis?
      mesh      : FEniCS mesh if there is one already created.
      zero_edge : Make edges of domain -0.002?
      bool_data : Convert data to boolean?
      req_dg    : Some field may require DG space?

    Based on thickness extents, create a rectangular mesh object.
    Also define the function space as continious galerkin, order 1.
    """
    self.data       = {}        # dictionary of converted matlab data
    self.rem_nans   = False     # may change depending on 'identify_nans' call
    self.chg_proj   = False     # change to other projection flag
    self.color      = 'light_green'

    mf_obj = mf_obj.copy()

    self.name       = mf_obj.pop('dataset')
    self.cont       = mf_obj.pop('continent')
    self.proj       = mf_obj.pop('pyproj_Proj')

    # initialize extents :
    self.ny         = mf_obj.pop('ny')
    self.nx         = mf_obj.pop('nx')
    self.x_min      = float(mf_obj.pop('map_western_edge'))
    self.x_max      = float(mf_obj.pop('map_eastern_edge'))
    self.y_min      = float(mf_obj.pop('map_southern_edge'))
    self.y_max      = float(mf_obj.pop('map_northern_edge'))
    self.x          = linspace(self.x_min, self.x_max, self.nx)
    self.y          = linspace(self.y_min, self.y_max, self.ny)
    self.good_x     = array(ones(len(self.x)), dtype=bool)      # no NaNs
    self.good_y     = array(ones(len(self.y)), dtype=bool)      # no NaNs

    s    = "::: creating %s DataInput object :::" % self.name
    print_text(s, self.color)

    # process the data mf_obj :
    for fn in mf_obj:

      # raw data matrix with key fn :
      d = mf_obj[fn]

      # identify, but not remove the NaNs :
      self.identify_nans(d, fn)

      # make edges all zero for interpolation of interior regions :
      if zero_edge:
        d[:,0] = d[:,-1] = d[0,:] = d[-1,:] = -0.002
        d[:,1] = d[:,-2] = d[1,:] = d[-2,:] = -0.002

      # convert to boolean :
      if bool_data: d[d > 0] = 1

      # reflect over the x-axis :
      if flip: d = d[::-1, :]

      # add to the dictionary of arrays :
      self.data[fn.split('.')[0]] = d

    # remove un-needed rows/cols from data:
    if self.rem_nans:
      self.remove_nans()

    if gen_space:
      # define a FEniCS Rectangle over the domain :
      if mesh == None:
        self.mesh = RectangleMesh(self.x_min, self.y_min,
                                  self.x_max, self.y_max,
                                  self.nx,    self.ny)
      else:
        self.mesh = mesh

      # define the function space of the problem :
      self.func_space      = FunctionSpace(self.mesh, "CG", 1)

      # if DG space is needed :
      if req_dg:
        self.func_space_dg = FunctionSpace(self.mesh, "DG", 1)

      self.mesh.init(1,2)
      self.dim        = self.mesh.ufl_cell().topological_dimension()
      if self.dim == 3:
        self.num_facets = self.mesh.size_global(2)
        self.num_cells  = self.mesh.size_global(3)
        self.dof        = self.mesh.size_global(0)
      elif self.dim == 2:
        self.num_facets = self.mesh.size_global(1)
        self.num_cells  = self.mesh.size_global(2)
        self.dof        = self.mesh.size_global(0)
      s = "    - using %iD mesh with %i cells, %i facets, %i vertices - " \
          % (self.dim, self.num_cells, self.num_facets, self.dof)
      print_text(s, self.color)
    else:
      s = "    - not using a mesh - "
      print_text(s, self.color)
Exemplo n.º 13
0
class DataInput(object):
  """
  This object brokers the relation between the driver file and a number of
  data sets. It's function is to:

    1) Read the data. Presently it is assumed that all input is Matlab V5.
    2) Filter or process the data. Presently the only filter is to remove
       rows or columns in key data sets that are entirely not a number.
    3) Project the data onto a finite element mesh that is generated based
       on the extents of the input data set.
  """
  def __init__(self, mf_obj, flip=False, mesh=None, gen_space=True,
               zero_edge=False, bool_data=False, req_dg=False):
    """
    The following data are used to initialize the class :

      mf_obj    : mesh factory dictionary.
      flip      : flip the data over the x-axis?
      mesh      : FEniCS mesh if there is one already created.
      zero_edge : Make edges of domain -0.002?
      bool_data : Convert data to boolean?
      req_dg    : Some field may require DG space?

    Based on thickness extents, create a rectangular mesh object.
    Also define the function space as continious galerkin, order 1.
    """
    self.data       = {}        # dictionary of converted matlab data
    self.rem_nans   = False     # may change depending on 'identify_nans' call
    self.chg_proj   = False     # change to other projection flag
    self.color      = 'light_green'

    mf_obj = mf_obj.copy()

    self.name       = mf_obj.pop('dataset')
    self.cont       = mf_obj.pop('continent')
    self.proj       = mf_obj.pop('pyproj_Proj')

    # initialize extents :
    self.ny         = mf_obj.pop('ny')
    self.nx         = mf_obj.pop('nx')
    self.x_min      = float(mf_obj.pop('map_western_edge'))
    self.x_max      = float(mf_obj.pop('map_eastern_edge'))
    self.y_min      = float(mf_obj.pop('map_southern_edge'))
    self.y_max      = float(mf_obj.pop('map_northern_edge'))
    self.x          = linspace(self.x_min, self.x_max, self.nx)
    self.y          = linspace(self.y_min, self.y_max, self.ny)
    self.good_x     = array(ones(len(self.x)), dtype=bool)      # no NaNs
    self.good_y     = array(ones(len(self.y)), dtype=bool)      # no NaNs

    s    = "::: creating %s DataInput object :::" % self.name
    print_text(s, self.color)

    # process the data mf_obj :
    for fn in mf_obj:

      # raw data matrix with key fn :
      d = mf_obj[fn]

      # identify, but not remove the NaNs :
      self.identify_nans(d, fn)

      # make edges all zero for interpolation of interior regions :
      if zero_edge:
        d[:,0] = d[:,-1] = d[0,:] = d[-1,:] = -0.002
        d[:,1] = d[:,-2] = d[1,:] = d[-2,:] = -0.002

      # convert to boolean :
      if bool_data: d[d > 0] = 1

      # reflect over the x-axis :
      if flip: d = d[::-1, :]

      # add to the dictionary of arrays :
      self.data[fn.split('.')[0]] = d

    # remove un-needed rows/cols from data:
    if self.rem_nans:
      self.remove_nans()

    if gen_space:
      # define a FEniCS Rectangle over the domain :
      if mesh == None:
        self.mesh = RectangleMesh(self.x_min, self.y_min,
                                  self.x_max, self.y_max,
                                  self.nx,    self.ny)
      else:
        self.mesh = mesh

      # define the function space of the problem :
      self.func_space      = FunctionSpace(self.mesh, "CG", 1)

      # if DG space is needed :
      if req_dg:
        self.func_space_dg = FunctionSpace(self.mesh, "DG", 1)

      self.mesh.init(1,2)
      self.dim        = self.mesh.ufl_cell().topological_dimension()
      if self.dim == 3:
        self.num_facets = self.mesh.size_global(2)
        self.num_cells  = self.mesh.size_global(3)
        self.dof        = self.mesh.size_global(0)
      elif self.dim == 2:
        self.num_facets = self.mesh.size_global(1)
        self.num_cells  = self.mesh.size_global(2)
        self.dof        = self.mesh.size_global(0)
      s = "    - using %iD mesh with %i cells, %i facets, %i vertices - " \
          % (self.dim, self.num_cells, self.num_facets, self.dof)
      print_text(s, self.color)
    else:
      s = "    - not using a mesh - "
      print_text(s, self.color)

  def change_projection(self, di):
    """
    change the projection of this data to that of the <di> DataInput object's
    projection.  The works only if the object was created with the parameter
    create_proj = True.
    """
    if type(di) == type(self):
      proj = di.proj
      name = di.name
    elif type(di) == dict:
      name = di['dataset']
      proj = di['pyproj_Proj']

    s    = "::: changing '%s' DataInput object projection to that of '%s' :::" \
           % (self.name, name)
    print_text(s, self.color)

    self.chg_proj = True
    self.new_p    = proj

  def get_xy(self,lon,lat):
    """
    Returns the (x,y) flat map coordinates corresponding to a given (lon,lat)
    coordinate pair using the DataInput object's current projection.
    """
    return self.proj(lon,lat)

  def interpolate_to_di(self, do, fn, fo):
    """
    interpolate the field with name <fn> from this dataInput object to 
    the grid used by the other dataInput object <do>.  The field is saved
    to <do>.data[<fo>].
    """
    s = "::: interpolating %s's '%s' field to %s's grid with key '%s' :::"
    print_text(s % (self.name, fn, do.name, fo) , self.color)
    interp      = interp2d(self.x, self.y, self.data[fn])
    fo_v        = interp(do.x, do.y)
    do.data[fo] = fo_v

  def transform_xy(self, di):
    """
    Transforms the coordinates from DataInput object <di> to this object's
    coordinates.  Returns tuple of arrays (x,y).
    """
    # FIXME : need a fast way to convert all the x, y. Currently broken
    s = "::: transforming coordinates from %s to %s :::" % (di.name, self.name)
    print_text(s, self.color)
    xn, yn = transform(di.proj, self.proj, di.x, di.y)
    return (xn, yn)

  def rescale_field(self, fo, fn, umin, umax, inverse=False):
    """
    Rescale the data field with key <fo> with lower and upper bound <umin>,
    <umax>, creating a new data field with key <fn>.

    If <inverse> == True, scale the data to the inverse of the data <fo>,
    i.e., the smallest values become <umax>, and the largest become <umin>.

    This is useful, for example, when refining a mesh in areas where a 
    velocity field is high.
    """
    if inverse:
      inv_txt = 'inversely'
    elif not inverse:
      inv_txt = ''
    s = "::: rescaling data field '%s' %s with lower and upper " + \
        "bound (%g, %g) to field '%s' :::" 
    print_text(s % (fo, inv_txt, umin, umax, fn), self.color)

    U = self.data[fo]
    if not inverse:
      amin = ( umin/(1.0 + U.max()) - umax/(1.0 + U.min()) ) / (umax - umin)
      amax = umin / ( amin + 1.0/(1.0 + U.min()) )
    elif inverse:
      amin = ( umin/(1.0 + U.min()) - umax/(1.0 + U.max()) ) / (umax - umin)
      amax = umin / ( amin + 1.0/(1.0 + U.max()) )
    
    self.data[fn] = (amin + 1.0/(1.0 + U)) * amax

  def integrate_field(self, fn_spec, specific, fn_main, r=20, val=0.0):
    """
    Assimilate a field with filename <fn_spec>  from DataInput object
    <specific> into this DataInput's field with filename <fn_main>.  The
    parameter <val> should be set to the specific dataset's value for
    undefined regions, default is 0.0.  <r> is a parameter used to eliminate
    border artifacts from interpolation; increase this value to eliminate edge
    noise.
    """
    s    = "::: integrating %s field from %s :::" % (fn_spec, specific.name)
    print_text(s, self.color)
    # get the dofmap to map from mesh vertex indices to function indicies :
    df    = self.func_space.dofmap()
    dfmap = df.vertex_to_dof_map(self.mesh)

    unew  = self.get_projection(fn_main)      # existing dataset projection
    uocom = unew.compute_vertex_values()      # mesh indexed main vertex values

    uspec = specific.get_projection(fn_spec)  # specific dataset projection
    uscom = uspec.compute_vertex_values()     # mesh indexed spec vertex values

    d     = float64(specific.data[fn_spec])   # original matlab spec dataset

    # get arrays of x-values for specific domain
    xs    = specific.x
    ys    = specific.y
    nx    = specific.nx
    ny    = specific.ny

    for v in vertices(self.mesh):
      # mesh vertex x,y coordinate :
      i   = v.index()
      p   = v.point()
      x   = p.x()
      y   = p.y()

      # indexes of closest datapoint to specific dataset's x and y domains :
      idx = abs(xs - x).argmin()
      idy = abs(ys - y).argmin()

      # data value for closest value and square around the value in question :
      dv  = d[idy, idx]
      db  = d[max(0,idy-r) : min(ny, idy+r),  max(0, idx-r) : min(nx, idx+r)]

      # if the vertex is in the domain of the specific dataset, and the value
      # of the dataset at this point is not abov <val>, set the array value
      # of the main file to this new specific region's value.
      if dv > val:
        #print "found:", x, y, idx, idy, v.index()
        # if the values is not near an edge, make the value equal to the
        # nearest specific region's dataset value, otherwise, use the
        # specific region's projected value :
        if all(db > val):
          uocom[i] = uscom[i]
        else :
          uocom[i] = dv

    # set the values of the projected original dataset equal to the assimilated
    # dataset :
    unew.vector().set_local(uocom[dfmap])
    return unew

  def identify_nans(self, data, fn):
    """
    private method to identify rows and columns of all nans from grids. This
    happens when the data from multiple GIS databases don't quite align on
    whatever the desired grid is.
    """
    good_x = ~all(isnan(data), axis=0) & self.good_x  # good cols
    good_y = ~all(isnan(data), axis=1) & self.good_y  # good rows

    if any(good_x != self.good_x):
      total_nan_x = sum(good_x == False)
      self.rem_nans = True
      s =  "Warning: %d row(s) of \"%s\" are entirely NaN." % (total_nan_x, fn)
      print_text(s, self.color)

    if any(good_y != self.good_y):
      total_nan_y = sum(good_y == False)
      self.rem_nans = True
      s = "Warning: %d col(s) of \"%s\" are entirely NaN." % (total_nan_y, fn)
      print_text(s, self.color)

    self.good_x = good_x
    self.good_y = good_y

  def remove_nans(self):
    """
    remove extra rows/cols from data where NaNs were identified and set the
    extents to those of the good x and y values.
    """
    s = "::: removing NaNs from %s :::" % self.name
    print_text(s, self.color)

    self.x     = self.x[self.good_x]
    self.y     = self.y[self.good_y]
    self.x_min = self.x.min()
    self.x_max = self.x.max()
    self.y_min = self.y.min()
    self.y_max = self.y.max()
    self.nx    = len(self.x)
    self.ny    = len(self.y)

    for i in self.data.keys():
      self.data[i] = self.data[i][self.good_y, :          ]
      self.data[i] = self.data[i][:,           self.good_x]

  def set_data_min(self, fn, boundary, val):
    """
    set the minimum value of a data array with filename <fn> below <boundary>
    to value <val>.
    """
    s    = "::: setting any value of %s's %s field below %.3e to %.3e :::" \
           % (self.name, fn, boundary, val)
    print_text(s, self.color)
    
    d                = self.data[fn]
    d[d <= boundary] = val
    self.data[fn]    = d

  def set_data_max(self, fn, boundary, val):
    """
    set the maximum value of a data array with filename <fn> above <boundary>
    to value <val>.
    """
    s    = "::: setting any value of %s's %s field above %.3e to %.3e :::" \
           % (self.name, fn, boundary, val)
    print_text(s, self.color)
    
    d                = self.data[fn]
    d[d >= boundary] = val
    self.data[fn]    = d

  def set_data_val(self, fn, old_val, new_val):
    """
    set all values of the matrix with filename <fn> equal to <old_val>
    to <new_val>.
    """
    s    = "::: setting all values of %s's %s field equal to %.3e to %.3e :::" \
           % (self.name, fn, old_val, new_val)
    print_text(s, self.color)
    
    d                = self.data[fn]
    d[d == old_val]  = new_val
    self.data[fn]    = d

  def get_interpolation(self, fn, near=False, bool_data=False, order=1):
    """
    Return a projection of data with field name <fn> on the functionspace.
    If multiple instances of the DataInput class are present, both initialized
    with identical meshes, the projections returned by this function may be
    used by the same mathematical problem.

    If <bool_data> is True, convert all values > 0 to 1.
    <order> sets the order of the interpolation, default linear (1).
    """
    if near:
      t = 'nearest-neighbor'
    else:
      t = 'spline'
    s    = "::: getting %s %s interpolation from %s :::" % (fn, t, self.name)
    print_text(s, self.color)

    interp = self.get_expression(fn, kx=order, ky=order,
                                 bool_data=bool_data, near=near)

    return interpolate(interp, self.func_space, annotate=False)

  def get_expression(self, fn, order=1, bool_data=False, near=False):
    """
    Creates a spline-interpolation expression for data <fn>.  Optional
    argument <order> determine order of approximation in x and y
    directions (default linear).  If <bool_data> is True, convert to boolean,
    if <near> is True, use nearest-neighbor interpolation.
    """
    if near:
      t = 'nearest-neighbor'
    else:
      t = '%i-order spline' % order
    s = "::: getting %s %s expression from %s :::" % (fn, t, self.name)
    print_text(s, self.color)

    data = self.data[fn]
    if bool_data: data[data > 0] = 1

    if self.chg_proj:
      new_proj = self.new_p
      old_proj = self.proj

    if not near :
      spline = RectBivariateSpline(self.x, self.y, data.T, kx=order, ky=order)

    xs       = self.x
    ys       = self.y
    chg_proj = self.chg_proj

    class newExpression(Expression):
      def eval(self, values, x):
        if chg_proj:
          xn, yn = transform(new_proj, old_proj, x[0], x[1])
        else:
          xn, yn = x[0], x[1]
        if not near:
          values[0] = spline(xn, yn)
        else:
          idx       = abs(xs - xn).argmin()
          idy       = abs(ys - yn).argmin()
          values[0] = data[idy, idx]

    return newExpression(element = self.func_space.ufl_element())

  def get_nearest(self, fn):
    """
    returns a dolfin Function object with values given by interpolated
    nearest-neighbor data <fn>.
    """
    #FIXME: get to work with a change of projection.
    # get the dofmap to map from mesh vertex indices to function indicies :
    df    = self.func_space.dofmap()
    dfmap = df.vertex_to_dof_map(self.mesh)

    unew  = Function(self.func_space)         # existing dataset projection
    uocom = unew.vector().array()             # mesh indexed main vertex values

    d     = float64(self.data[fn])            # original matlab spec dataset

    # get arrays of x-values for specific domain
    xs    = self.x
    ys    = self.y

    for v in vertices(self.mesh):
      # mesh vertex x,y coordinate :
      i   = v.index()
      p   = v.point()
      x   = p.x()
      y   = p.y()

      # indexes of closest datapoint to specific dataset's x and y domains :
      idx = abs(xs - x).argmin()
      idy = abs(ys - y).argmin()

      # data value for closest value :
      dv  = d[idy, idx]
      if dv > 0:
        dv = 1.0
      uocom[i] = dv

    # set the values of the empty function's vertices to the data values :
    unew.vector().set_local(uocom[dfmap])
    return unew
Exemplo n.º 14
0
 def get_uniform_mesh(self, temporal_nodes, spatial_nodes):
     """Generate uniform mesh of the spacetime."""
     return RectangleMesh(Point(self.t0, self.x0), Point(self.t1, self.x1),
                          temporal_nodes, spatial_nodes)
Exemplo n.º 15
0
# Create mesh and define function space
nx = 100
ny = 25
nz = 1

fenics_dt = 0.01  # time step size
dt_out = 0.2  # interval for writing VTK files
y_top = 0
y_bottom = y_top - .25
x_left = 0
x_right = x_left + 1

p0 = Point(x_left, y_bottom, 0)
p1 = Point(x_right, y_top, 1)

mesh = RectangleMesh(p0, p1, nx, ny)
V = FunctionSpace(mesh, 'P', 1)
V_g = VectorFunctionSpace(mesh, 'P', 1)

alpha = 1  # m^2/s, https://en.wikipedia.org/wiki/Thermal_diffusivity
k = 100  # kg * m / s^3 / K, https://en.wikipedia.org/wiki/Thermal_conductivity

# Define boundary condition
u_D = Constant('310')
u_D_function = interpolate(u_D, V)
# We will only exchange flux in y direction on coupling interface. No initialization necessary.
V_flux_y = V_g.sub(1)

coupling_boundary = TopBoundary()
bottom_boundary = BottomBoundary()
Exemplo n.º 16
0
# Geometry and material properties
dim = 2  # number of dimensions
H = 1
W = 0.1
rho = 3000
E = 400000.0
nu = 0.3

mu = Constant(E / (2.0 * (1.0 + nu)))

lambda_ = Constant(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

# create Mesh
n_x_Direction = 5
n_y_Direction = 50
mesh = RectangleMesh(Point(-W / 2, 0), Point(W / 2, H), n_x_Direction,
                     n_y_Direction)

h = Constant(H / n_y_Direction)

# create Function Space
V = VectorFunctionSpace(mesh, 'P', 2)

# BCs
tol = 1E-14

# Trial and Test Functions
du = TrialFunction(V)
v = TestFunction(V)

u_np1 = Function(V)
saved_u_old = Function(V)
Exemplo n.º 17
0
    bilinear_form_solid_adjoint,
    functional_solid_adjoint,
)
from relaxation import relaxation
from shooting import shooting
from compute_residuals import compute_residuals
from refine import refine

parameters["allow_extrapolation"] = True
param = Parameters()

# Create meshes
mesh_f = RectangleMesh(
    Point(0.0, 0.0),
    Point(4.0, 1.0),
    param.NUMBER_ELEMENTS_HORIZONTAL,
    param.NUMBER_ELEMENTS_VERTICAL,
    diagonal="right",
)
mesh_s = RectangleMesh(
    Point(0.0, -1.0),
    Point(4.0, 0.0),
    param.NUMBER_ELEMENTS_HORIZONTAL,
    param.NUMBER_ELEMENTS_VERTICAL,
    diagonal="left",
)
boundary_mesh = BoundaryMesh(mesh_f, "exterior")
inner_boundary = Inner_boundary()
mesh_i = SubMesh(boundary_mesh, inner_boundary)

# Create function spaces
Exemplo n.º 18
0
alpha = 3  # parameter alpha
beta = 1.3  # parameter beta
gamma = args.gamma  # parameter gamma, dependence of heat flux on time
y_bottom, y_top = 0, 1
x_left, x_right = 0, 2
x_coupling = 1.5  # x coordinate of coupling interface

if domain_part is DomainPart.LEFT:
    p0 = Point(x_left, y_bottom)
    p1 = Point(x_coupling, y_top)
elif domain_part is DomainPart.RIGHT:
    p0 = Point(x_coupling, y_bottom)
    p1 = Point(x_right, y_top)

mesh = RectangleMesh(p0, p1, nx, ny)
V = FunctionSpace(mesh, 'P', 2)

# Define boundary condition
u_D = Expression(
    '1 + gamma*t*x[0]*x[0] + (1-gamma)*x[0]*x[0] + alpha*x[1]*x[1] + beta*t',
    degree=2,
    alpha=alpha,
    beta=beta,
    gamma=gamma,
    t=0)
u_D_function = interpolate(u_D, V)
# Define flux in x direction on coupling interface (grad(u_D) in normal direction)
f_N = Expression('2 * gamma*t*x[0] + 2 * (1-gamma)*x[0] ',
                 degree=1,
                 gamma=gamma,
Exemplo n.º 19
0
def build_mesh():
    mesh = RectangleMesh(p0=Point(-2,-2), p1=Point(2,2),
                         nx=nx, ny=nx)
    return mesh