Exemplo n.º 1
0
def run_sent_ret(config):
    train, dev = load_paper_dataset()

    with open('data/preprocessed_data/edocs.bin', 'rb') as rb:
        edocs = pickle.load(rb)

    with open(config['doc_ret_model'], 'rb') as rb:
        dmodel = pickle.load(rb)

    t2jnum = titles_to_jsonl_num()

    try:
        with open(config['sent_ret_model'], 'rb') as rb:
            model = pickle.load(rb)  # 加载模型参数
    except BaseException:
        try:
            selected = load_selected(config['sent_ret_line'])  # 加载采样数据
        except BaseException:
            docs = doc_ret(train, edocs, model=dmodel)
            selected = select_lines(docs, t2jnum, train,
                                    config['sent_ret_line'])

        model = sent_ret_model()
        X, y = model.process_train(selected, train)  # 训练模型
        model.fit(X, y)

        with open(config['sent_ret_model'], 'wb') as wb:
            pickle.dump(model, wb)

    docs = doc_ret(dev, edocs, model=dmodel)  # 进行文档检索
    lines = load_doc_lines(docs, t2jnum)
    evidence = sent_ret(dev, docs, lines, best=config['n_best'],
                        model=model)  # 进行句子检索
    line_hits(dev, evidence)  # 评估结果
Exemplo n.º 2
0
def run_evi_ret(config):
    train, dev = load_paper_dataset(config['train_input'],
                                    dev=config['dev_input'])

    for split, data in [('train', train), ('dev', dev)]:
        if split == 'train':
            out_file = config['train_output']
        if split == 'dev':
            out_file = config['dev_output']

        docs, evidence = evi_ret(data,
                                 n_docs=config['n_docs'],
                                 n_sents=config['n_sents'])
        pred = to_fever_format(data, docs, evidence)

        with open(out_file, 'w') as w:
            for example in pred:
                w.write(json.dumps(example, cls=NpEncoder) + '\n')
Exemplo n.º 3
0
def run_doc_ret(config):
    train, dev = load_paper_dataset()

    if os.path.exists(config['doc_ret_model']):
        with open(config['doc_ret_model'], 'rb') as rb:
            model = pickle.load(rb)
    else:
        if os.path.exists(config['doc_ret_docs']):
            selected = load_selected(config['doc_ret_docs'])
        else:
            selected = sample_docs(train, config['doc_ret_docs'])

        # 建立模型
        model = doc_ret_model()
        # 对训练数据进行预处理
        X, y = model.process_train(selected, train)
        # 训练模型
        model.fit(X, y)
        # 存储训练好的模型
        with open(config['doc_ret_model'], 'wb') as wb:
            pickle.dump(model, wb)

    if os.path.exists('data/preprocessed_data/edocs.bin'):
        with open('data/preprocessed_data/edocs.bin', 'rb') as rb:
            edocs = pickle.load(rb)
    else:
        t2jnum = titles_to_jsonl_num()
        edocs = title_edict(t2jnum)
        with open('data/preprocessed_data/edocs.bin', 'wb') as wb:
            pickle.dump(edocs, wb)

    print(len(model.f2v))
    # 使用训练好的模型对验证集进行文档检索
    docs = doc_ret(dev, edocs, best=config['n_best'], model=model)
    # 对检索结果进行评估
    title_hits(dev, docs)
Exemplo n.º 4
0
    with open(fname) as f:
        for line in tqdm(f):
            fields = line.rstrip("\n").split("\t")
            cid = int(fields[0])
            yn = int(fields[1])
            t = fields[2]
            p = fields[3]
            s = int(fields[4])
            if cid not in selected:
                selected[cid] = dict()
            selected[cid][yn] = [t, p, s]
    return selected


if __name__ == "__main__":
    train, dev = load_paper_dataset()
    # train, dev = load_split_trainset(9999)
    try:
        with open("data/doc_ir_model.bin", "rb") as rb:
            model = pickle.load(rb)
    except:
        try:
            selected = load_selected()
        except:
            selected = select_docs(train)
        model = doc_ir_model()
        rdocs = dict()
        for example in tqdm(train):
            cid = example["id"]
            if cid in selected:
                claim = example["claim"]
Exemplo n.º 5
0
    parser.add_argument("--dev_output")
    parser.add_argument("--test_input")
    parser.add_argument("--test_output")
    parser.add_argument("--n_docs",
                        type=int,
                        default=5,
                        help="how many documents to retrieve")
    parser.add_argument("--n_sents",
                        type=int,
                        default=5,
                        help="how many setences to retrieve")
    args = parser.parse_args()
    print(args)

    train, dev, test = load_paper_dataset(train=args.train_input,
                                          dev=args.dev_input,
                                          test=args.test_input)
    # train, dev = load_split_trainset(9999)
    for split, data in [("train", train), ("dev", dev), ("test", test)]:
        if split == "train":
            out_file = args.train_output
        elif split == "dev":
            out_file = args.dev_output
        elif split == "test":
            out_file = args.test_output
        if os.path.exists(out_file):
            print("file {} exists. skipping ir...".format(out_file))
            continue

        docs, evidence = get_evidence(data,
                                      n_docs=args.n_docs,