Exemplo n.º 1
0
# for different settings of Sct and Sc
path_name_pre = 'flt_chi_7_inlet_'
path_name_mid = 'map'
path_name_second = '/postProcessing/'

xD_name = []
xD_value = []
case_name = []
data = {}
for folder_name in glob.glob('{0}*{1}*'.format(path_name_pre, path_name_mid)):
    case = folder_name[len(path_name_pre):folder_name.find(path_name_mid)]
    case_name.append(case)
    for file_name in glob.glob('{0}{1}mean_xD*.csv'.format(
            folder_name, path_name_second)):
        xD = file_name[file_name.find('_xD') + 3:-4]
        z = fr.z_str_to_num(xD)
        xD_name.append(xD)
        xD_value.append(z)
        data.update({
            (case, z):
            np.genfromtxt(file_name, delimiter=',', names=True)
        })
xD_name = list(set(xD_name))
xD_value = sorted(list(set(xD_value)))

expr = {}
for xD in xD_name:
    file_name = '../pmCDEFarchives/pmD.stat/D{0}.Yave'.format(xD)
    expr.update({fr.z_str_to_num(xD): fr.sf_expr_read(file_name)})

for z in xD_value:
Exemplo n.º 2
0
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt

# data to plot
# two vars at least, because axes would be 1D vector for one var
var = ['Z', 'T', 'CO']

# import data
xD_value = []
data = {}
expr = {}
for filename in glob.glob('mean_xD*.csv'):
    pos = filename.find('.csv')
    xD = filename[7:pos]
    z = fr.z_str_to_num(xD)
    if z >= 7.5 and z <= 45.0:
        xD_value.append(z)
        data.update({z: np.genfromtxt(filename, delimiter=',', names=True)})
        exp_name = '../../../pmCDEFarchives/pmD.stat/D{}.Yave'.format(xD)
        expr.update({z: fr.sf_expr_read(exp_name)})
xD_value.sort()
for z in xD_value:
    data[z]['r'] /= z
    expr[z]['r'] /= z

# plot
# use TEX for interpreter
plt.rc('text', usetex=True)
# use serif font
plt.rc('font', family='serif')
    data[:, 1:3] /= U_REF

    simu.update({case: data})

# experiment scalar
folder_exp = '../pmCDEFarchives/pmD.stat/D'
scalar_name = ['T', 'Z']
expr = {'z': []}
for name in scalar_name:
    expr.update({name: []})
    expr.update({name + 'rms': []})
for file_name in glob.glob('{}*.Yave'.format(folder_exp)):
    data_tmp = fr.sf_expr_read(file_name)
    if file_name[len(folder_exp):-5].isdigit():
        if 0.0 in data_tmp['r']:
            expr['z'].append(fr.z_str_to_num(file_name[len(folder_exp):-5]))
            i = np.where(data_tmp['r'] == 0.0)[0]
            """
            elif -0.04 in data_tmp['r']:
                i = np.where(data_tmp['r'] == -0.04)[0]
            """
            for name in scalar_name:
                expr[name].append(data_tmp[name][i])
                expr[name + 'rms'].append(data_tmp[name + 'rms'][i])

# experiment velocity
file_name = '../TUD_LDV_DEF/TUD_LDV_D.axial'
expu = np.genfromtxt(file_name, skip_header=13)
expu[:, 2] = np.sqrt(expu[:, 2])
expu[:, 1:3] /= U_REF