class Test_1x1(unittest.TestCase):
  A = properties.ClassProperty('A')

    
  def test_assign_0D(self):
    self.A = properties.MatrixTemplate(1,1)
    self.A = 1234
    self.assertEqual(self.A.shape, (1,1))
    self.assertEqual(self.A[0][0], 1234)
  def test_assign_1D(self):
    self.A = properties.MatrixTemplate(1,1)
    # vector (1D) matrx
    self.A = [3256]
    self.assertEqual(self.A.shape, (1,1))
    self.assertEqual(self.A[0][0], 3256)
  def test_assign_2D(self):
    self.A = properties.MatrixTemplate(1,1)
    # matrix 1x1, 2D array-like
    self.A = [[2394876]]
    self.assertEqual(self.A.shape, (1,1))
    self.assertEqual(self.A[0][0], 2394876)
  def test_assign_3D(self):
    self.A = properties.MatrixTemplate(1,1)
    # 3D array-like
    self.A = [[[32786]]]
    self.assertEqual(self.A.shape, (1,1))
    self.assertEqual(self.A[0][0], 32786)
class TestMatrix(unittest.TestCase):

  A = properties.ClassProperty('A')
  def test_invalid(self):
    m,n = 3,5
    self.A = properties.MatrixTemplate(m,n)
    
    with self.assertRaises(ValueError):
      # A 1D vector whose number of elements is the same as that of the matrix
      self.A = np.zeros((m*n))
    with self.assertRaises(ValueError):
      # Transposed will not be matched automatically of both dimensions are greater than 1
      self.A = np.zeros((n,m))
    
    for shape in [(n,), (m,), (m,1), (1,m), (n,1), (1,n)]:
      with self.assertRaises(ValueError):
        self.A = np.zeros(shape)
    
    self.A = np.zeros((m,n))

  def test_multiplicative(self):
    self.A = properties.MatrixTemplate(4,4,multiplicative=True)
    self.A = 4
    self.assertTrue(np.allclose(self.A, 4 * np.eye(4)))
    with self.assertRaises(ValueError):
      self.A = np.ones(4)
    
    self.A = properties.MatrixTemplate(4,4,multiplicative=False)
    with self.assertRaises(ValueError):
      self.A = 4
    with self.assertRaises(ValueError):
      self.A = np.ones(4)
class TestZero(unittest.TestCase):
  A = properties.ClassProperty('A')
  F = properties.ClassProperty('F')

  def test_zero_matrix(self):
    for shape in [(1,4), (5, 1), (3,6), (7,3)]:
      self.A = properties.MatrixTemplate(*shape)
      self.A = 0
      self.assertTrue(np.all(self.A == 0))
      self.assertEqual(self.A.shape, shape)

  def test_zero_matrix_function(self):
    def zero():
      return 0
    for shape in [(1,4), (5, 1), (3,6), (7,3)]:
      self.F = properties.MatrixFunctionTemplate(*shape)
      self.F = zero
      self.assertTrue(np.all(self.F() == 0))
      self.assertEqual(self.F().shape, shape)
class AutomaticConversionOnAssignment(unittest.TestCase):
  n = properties.ClassProperty('n');
  def test_transformation(self):
    class EnsureEvenNumber(properties.Template):
      def __call__(self, v):
        return v - (v % 2)
    self.n = EnsureEvenNumber()
    self.n = 20;
    self.assertEqual(self.n, 20)
    self.n = 11
    self.assertEqual(self.n, 10)
class PropertyValidation(unittest.TestCase):
  n = properties.ClassProperty('n')
  def test_validation(self):
    class ExpectEvenNumber(properties.Template):
      def __call__(self, v):
        assert (v % 2 == 0)
        return v
    self.n = ExpectEvenNumber()
    self.n = 4
    self.n = 8
    with self.assertRaises(Exception):
      self.n = 3
class TestVector(unittest.TestCase):

  A = properties.ClassProperty('A')
  def test_valid_multi_dimensional(self):
    for n in range(2, 5):
      x = list(range(n))
      for shape in [(1,n), (n, 1)]:
        self.A = properties.MatrixTemplate(*shape)
        for d1 in range(3):
          x = [xi for xi in x];  
          y = x
          for d2 in range(3):
            y = [y]
            self.A = y
            self.assertEqual(self.A.shape, shape);
  
  def test_invalid_1D(self):
    for n in range(2, 5):
      for x in [list(range(1, n+2)), list(range(1, n))]:
        for shape in [(1,n), (n, 1)]:
          ### CHANGE THE TEMPLATE HERE ###
          self.A = properties.MatrixTemplate(*shape)
          for d1 in range(3):
            x = [xi for xi in x];  
            y = x
            for d2 in range(3):
              y = [y]
              with self.assertRaises(ValueError):
                self.A = y
  
  def test_invalid_interpretations_from_2D(self):
    m,n=3,5
    for shape in [(m*n,1), (1,m*n)]:
      self.A = properties.MatrixTemplate(*shape)
      with self.assertRaises(ValueError):
        # Number of elements of the whole matrix match the size of the vector
        self.A = np.zeros((m,n))
      with self.assertRaises(ValueError):
        # Columns of the matrix match the vector shape, but not the matrix
        self.A = np.zeros((m*n, 2))
      with self.assertRaises(ValueError):
        # Rows of the matrix match the vector shape, but not the matrix
        self.A = np.zeros((2, m*n))
Exemplo n.º 7
0
class ExtendedKalmanFilter(object):

    """ Implements an extended Kalman filter (EKF). You are responsible for
    setting the various state variables to reasonable values; the defaults
    will  not give you a functional filter.

    You will have to set the following attributes after constructing this
    object for the filter to perform properly. Please note that there are
    various checks in place to ensure that you have made everything the
    'correct' size. However, it is possible to provide incorrectly sized
    arrays such that the linear algebra can not perform an operation.
    It can also fail silently - you can end up with matrices of a size that
    allows the linear algebra to work, but are the wrong shape for the problem
    you are trying to solve.

    Parameters
    ----------

    dim_x : int
        Number of state variables for the Kalman filter. For example, if
        you are tracking the position and velocity of an object in two
        dimensions, dim_x would be 4.

        This is used to set the default size of P, Q, and u

    dim_z : int
        Number of of measurement inputs. For example, if the sensor
        provides you with position in (x,y), dim_z would be 2.

    Attributes
    ----------
    x : numpy.array(dim_x, 1)
        State estimate vector

    P : numpy.array(dim_x, dim_x)
        Covariance matrix

    x_prior : numpy.array(dim_x, 1)
        Prior (predicted) state estimate. The *_prior and *_post attributes
        are for convienence; they store the  prior and posterior of the
        current epoch. Read Only.

    P_prior : numpy.array(dim_x, dim_x)
        Prior (predicted) state covariance matrix. Read Only.

    x_post : numpy.array(dim_x, 1)
        Posterior (updated) state estimate. Read Only.

    P_post : numpy.array(dim_x, dim_x)
        Posterior (updated) state covariance matrix. Read Only.

    R : numpy.array(dim_z, dim_z)
        Measurement noise matrix

    Q : numpy.array(dim_x, dim_x)
        Process noise matrix

    F : numpy.array()
        State Transition matrix

    H : numpy.array(dim_x, dim_x)
        Measurement function

    y : numpy.array
        Residual of the update step. Read only.

    K : numpy.array(dim_x, dim_z)
        Kalman gain of the update step. Read only.

    S :  numpy.array
        Systen uncertaintly projected to measurement space. Read only.

    z : ndarray
        Last measurement used in update(). Read only.

    log_likelihood : float
        log-likelihood of the last measurement. Read only.

    likelihood : float
        likelihood of last measurment. Read only.

        Computed from the log-likelihood. The log-likelihood can be very
        small,  meaning a large negative value such as -28000. Taking the
        exp() of that results in 0.0, which can break typical algorithms
        which multiply by this value, so by default we always return a
        number >= sys.float_info.min.

    mahalanobis : float
        mahalanobis distance of the innovation. E.g. 3 means measurement
        was 3 standard deviations away from the predicted value.

        Read only.

    Examples
    --------

    See my book Kalman and Bayesian Filters in Python
    https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
    """
    # overridable parameters guarded by checks
    x = properties.ClassProperty('x')
    P = properties.ClassProperty('P')
    Q = properties.ClassProperty('Q')
    B = properties.ClassProperty('B')
    F = properties.ClassProperty('F')
    R = properties.ClassProperty('R')
    z = properties.ClassProperty('z')
    def __init__(self, dim_x, dim_z, dim_u=0):

        self.dim_x = dim_x
        self.dim_z = dim_z
        self.dim_u = dim_u

        # Set templates that will hook the assignments and cast to
        # the specific shape
        self.x = properties.MatrixTemplate(dim_x, 1)
        self.P = properties.MatrixTemplate(dim_x, dim_x)
        self.Q = properties.MatrixTemplate(dim_x, dim_x)
        self.B = properties.MatrixTemplate(dim_x, dim_u)
        self.F = properties.MatrixTemplate(dim_x, dim_x)
        self.R = properties.MatrixTemplate(dim_z, dim_z)
        self.z = properties.MatrixTemplate(dim_z, 1)


        self.x = zeros((dim_x, 1)) # state
        self.P = eye(dim_x)        # uncertainty covariance
        self.B = 0                 # control transition matrix
        self.F = np.eye(dim_x)     # state transition matrix
        self.R = eye(dim_z)        # state uncertainty
        self.Q = eye(dim_x)        # process uncertainty
        self.y = zeros((dim_z, 1)) # residual

        z = np.array([None]*self.dim_z)
        self.z = reshape_z(z, self.dim_z, self.x.ndim)

        # gain and residual are computed during the innovation step. We
        # save them so that in case you want to inspect them for various
        # purposes
        self.K = np.zeros(self.x.shape) # kalman gain
        self.y = zeros((dim_z, 1))
        self.S = np.zeros((dim_z, dim_z))   # system uncertainty
        self.SI = np.zeros((dim_z, dim_z))  # inverse system uncertainty

        # identity matrix. Do not alter this.
        self._I = np.eye(dim_x)

        self._log_likelihood = log(sys.float_info.min)
        self._likelihood = sys.float_info.min
        self._mahalanobis = None

        # these will always be a copy of x,P after predict() is called
        self.x_prior = self.x.copy()
        self.P_prior = self.P.copy()

        # these will always be a copy of x,P after update() is called
        self.x_post = self.x.copy()
        self.P_post = self.P.copy()

    def predict_update(self, z, HJacobian, Hx, args=(), hx_args=(), u=0):
        """ Performs the predict/update innovation of the extended Kalman
        filter.

        Parameters
        ----------

        z : np.array
            measurement for this step.
            If `None`, only predict step is perfomed.

        HJacobian : function
           function which computes the Jacobian of the H matrix (measurement
           function). Takes state variable (self.x) as input, along with the
           optional arguments in args, and returns H.

        Hx : function
            function which takes as input the state variable (self.x) along
            with the optional arguments in hx_args, and returns the measurement
            that would correspond to that state.

        args : tuple, optional, default (,)
            arguments to be passed into HJacobian after the required state
            variable.

        hx_args : tuple, optional, default (,)
            arguments to be passed into Hx after the required state
            variable.

        u : np.array or scalar
            optional control vector input to the filter.
        """
        #pylint: disable=too-many-locals

        if not isinstance(args, tuple):
            args = (args,)

        if not isinstance(hx_args, tuple):
            hx_args = (hx_args,)

        if np.isscalar(z) and self.dim_z == 1:
            z = np.asarray([z], float)

        F = self.F
        B = self.B
        P = self.P
        Q = self.Q
        R = self.R
        x = self.x

        H = HJacobian(x, *args)

        # predict step
        x = dot(F, x) + dot(B, u)
        P = dot(F, P).dot(F.T) + Q

        # save prior
        self.x_prior = np.copy(self.x)
        self.P_prior = np.copy(self.P)

        # update step
        PHT = dot(P, H.T)
        self.S = dot(H, PHT) + R
        self.SI = linalg.inv(self.S)
        self.K = dot(PHT, self.SI)

        self.y = z - Hx(x, *hx_args)
        self.x = x + dot(self.K, self.y)

        I_KH = self._I - dot(self.K, H)
        self.P = dot(I_KH, P).dot(I_KH.T) + dot(self.K, R).dot(self.K.T)

        # save measurement and posterior state
        self.z = deepcopy(z)
        self.x_post = self.x.copy()
        self.P_post = self.P.copy()

        # set to None to force recompute
        self._log_likelihood = None
        self._likelihood = None
        self._mahalanobis = None

    def update(self, z, HJacobian, Hx, R=None, args=(), hx_args=(),
               residual=np.subtract):
        """ Performs the update innovation of the extended Kalman filter.

        Parameters
        ----------

        z : np.array
            measurement for this step.
            If `None`, posterior is not computed

        HJacobian : function
           function which computes the Jacobian of the H matrix (measurement
           function). Takes state variable (self.x) as input, returns H.

        Hx : function
            function which takes as input the state variable (self.x) along
            with the optional arguments in hx_args, and returns the measurement
            that would correspond to that state.

        R : np.array, scalar, or None
            Optionally provide R to override the measurement noise for this
            one call, otherwise  self.R will be used.

        args : tuple, optional, default (,)
            arguments to be passed into HJacobian after the required state
            variable. for robot localization you might need to pass in
            information about the map and time of day, so you might have
            `args=(map_data, time)`, where the signature of HCacobian will
            be `def HJacobian(x, map, t)`

        hx_args : tuple, optional, default (,)
            arguments to be passed into Hx function after the required state
            variable.

        residual : function (z, z2), optional
            Optional function that computes the residual (difference) between
            the two measurement vectors. If you do not provide this, then the
            built in minus operator will be used. You will normally want to use
            the built in unless your residual computation is nonlinear (for
            example, if they are angles)
        """

        if z is None:
            self.z = np.array([[None]*self.dim_z]).T
            self.x_post = self.x.copy()
            self.P_post = self.P.copy()
            return

        if not isinstance(args, tuple):
            args = (args,)

        if not isinstance(hx_args, tuple):
            hx_args = (hx_args,)

        if R is None:
            R = self.R
        elif np.isscalar(R):
            R = eye(self.dim_z) * R

        if np.isscalar(z) and self.dim_z == 1:
            z = np.asarray([z], float)

        H = HJacobian(self.x, *args)

        PHT = dot(self.P, H.T)
        self.S = dot(H, PHT) + R
        self.SI = linalg.inv(self.S)
        self.K = PHT.dot(self.SI)

        hx = Hx(self.x, *hx_args)
        self.y = residual(z, hx)
        self.x = self.x + dot(self.K, self.y)

        # P = (I-KH)P(I-KH)' + KRK' is more numerically stable
        # and works for non-optimal K vs the equation
        # P = (I-KH)P usually seen in the literature.
        I_KH = self._I - dot(self.K, H)
        self.P = dot(I_KH, self.P).dot(I_KH.T) + dot(self.K, R).dot(self.K.T)

        # set to None to force recompute
        self._log_likelihood = None
        self._likelihood = None
        self._mahalanobis = None

        # save measurement and posterior state
        self.z = deepcopy(z)
        self.x_post = self.x.copy()
        self.P_post = self.P.copy()

    def predict_x(self, u=0):
        """
        Predicts the next state of X. If you need to
        compute the next state yourself, override this function. You would
        need to do this, for example, if the usual Taylor expansion to
        generate F is not providing accurate results for you.
        """
        u = properties.as_matrix((self.dim_u, 1), u)
        x = dot(self.F, self.x) + dot(self.B, u)
        self.x = x

    def predict(self, u=0):
        """
        Predict next state (prior) using the Kalman filter state propagation
        equations.

        Parameters
        ----------

        u : np.array
            Optional control vector. If non-zero, it is multiplied by B
            to create the control input into the system.
        """

        self.predict_x(u)
        self.P = dot(self.F, self.P).dot(self.F.T) + self.Q

        # save prior
        self.x_prior = np.copy(self.x)
        self.P_prior = np.copy(self.P)

    @property
    def log_likelihood(self):
        """
        log-likelihood of the last measurement.
        """

        if self._log_likelihood is None:
            self._log_likelihood = logpdf(x=self.y, cov=self.S)
        return self._log_likelihood

    @property
    def likelihood(self):
        """
        Computed from the log-likelihood. The log-likelihood can be very
        small,  meaning a large negative value such as -28000. Taking the
        exp() of that results in 0.0, which can break typical algorithms
        which multiply by this value, so by default we always return a
        number >= sys.float_info.min.
        """
        if self._likelihood is None:
            self._likelihood = exp(self.log_likelihood)
            if self._likelihood == 0:
                self._likelihood = sys.float_info.min
        return self._likelihood

    @property
    def mahalanobis(self):
        """
        Mahalanobis distance of innovation. E.g. 3 means measurement
        was 3 standard deviations away from the predicted value.

        Returns
        -------
        mahalanobis : float
        """
        if self._mahalanobis is None:
            self._mahalanobis = sqrt(float(dot(dot(self.y.T, self.SI), self.y)))
        return self._mahalanobis

    def __repr__(self):
        return '\n'.join([
            'KalmanFilter object',
            pretty_str('x', self.x),
            pretty_str('P', self.P),
            pretty_str('x_prior', self.x_prior),
            pretty_str('P_prior', self.P_prior),
            pretty_str('F', self.F),
            pretty_str('Q', self.Q),
            pretty_str('R', self.R),
            pretty_str('K', self.K),
            pretty_str('y', self.y),
            pretty_str('S', self.S),
            pretty_str('likelihood', self.likelihood),
            pretty_str('log-likelihood', self.log_likelihood),
            pretty_str('mahalanobis', self.mahalanobis)
            ])
class TestMatrixFunctionProperty(unittest.TestCase):
  F = properties.ClassProperty('F')

  def test_decorated_function(self):
    for shape in [(3,5), (7,4)]:
      @properties.MatrixFunction(*shape)
      def f(x):
        return np.zeros(x)
      
      # check that a matrix was returned
      self.assertEqual(f(shape).shape, shape)

      with self.assertRaises(ValueError):
        f(shape[::-1]) # Tell F to return a matrix with wrog shape

  def test_decorated_function_assignment(self):
    shape = (3,7)
    @properties.MatrixFunction(*shape)
    def f():
      raise TypeError("This should not be called")

    self.F = properties.MatrixFunctionTemplate(*shape)
    self.F = f # matches the template

    self.F = properties.MatrixFunctionTemplate(*shape[::-1])
    with self.assertRaises(ValueError):
      self.F = f # does not match the template

  def test_undecorated_function_assignment(self):
    shape = (3,7)
    def f():
      return 1
    self.F = properties.MatrixFunctionTemplate(*shape)

    # since f was not decorated it will accept expecting it
    # to return matrices of the given shape
    self.F = f

    with self.assertRaises(ValueError):
      self.F() # when f is called it will see an invalid value

  def test_multiplicativify_of_function(self):
    # Non multiplicative template
    self.F = properties.MatrixFunctionTemplate(4,4,multiplicative=False)
    def identity(x): return x
    # Undecorated function
    self.F = identity
    with self.assertRaises(ValueError):
      self.F(4)
    self.assertTrue(np.allclose(self.F(4*np.eye(4)), 4*np.eye(4)))

    # Non multiplicative template multiplicative function
    self.F = properties.DecoratedMatrixFunction((4,4), identity, multiplicative=True)
    self.assertTrue(np.allclose(self.F(4*np.eye(4)), 4*np.eye(4)))

    # Multiplicative template
    self.F = properties.MatrixFunctionTemplate(4,4,multiplicative=False)
    # Multiplicative template undecorated function
    self.F = identity
    self.assertTrue(np.allclose(self.F(4*np.eye(4)), 4*np.eye(4)))

    # Multiplicative template multiplicative function
    self.F = properties.DecoratedMatrixFunction((4,4), identity, multiplicative=True)
    self.assertTrue(np.allclose(self.F(4*np.eye(4)), 4*np.eye(4)))

    # Multiplicative template non-multiplicative function
    self.F = properties.DecoratedMatrixFunction((4,4), identity, multiplicative=False)
    with self.assertRaises(ValueError):
      self.F(6)
 class Class:
   prop1 = properties.ClassProperty('prop1')
   prop2 = properties.ClassProperty('prop2')
Exemplo n.º 10
0
class UnscentedKalmanFilter(object):
    # pylint: disable=too-many-instance-attributes
    # pylint: disable=invalid-name
    r"""
    Implements the Scaled Unscented Kalman filter (UKF) as defined by
    Simon Julier in [1], using the formulation provided by Wan and Merle
    in [2]. This filter scales the sigma points to avoid strong nonlinearities.


    Parameters
    ----------

    dim_x : int
        Number of state variables for the filter. For example, if
        you are tracking the position and velocity of an object in two
        dimensions, dim_x would be 4.


    dim_z : int
        Number of of measurement inputs. For example, if the sensor
        provides you with position in (x,y), dim_z would be 2.

        This is for convience, so everything is sized correctly on
        creation. If you are using multiple sensors the size of `z` can
        change based on the sensor. Just provide the appropriate hx function


    dt : float
        Time between steps in seconds.



    hx : function(x,**hx_args)
        Measurement function. Converts state vector x into a measurement
        vector of shape (dim_z).

    fx : function(x,dt,**fx_args)
        function that returns the state x transformed by the
        state transition function. dt is the time step in seconds.

    points : class
        Class which computes the sigma points and weights for a UKF
        algorithm. You can vary the UKF implementation by changing this
        class. For example, MerweScaledSigmaPoints implements the alpha,
        beta, kappa parameterization of Van der Merwe, and
        JulierSigmaPoints implements Julier's original kappa
        parameterization. See either of those for the required
        signature of this class if you want to implement your own.

    sqrt_fn : callable(ndarray), default=None (implies scipy.linalg.cholesky)
        Defines how we compute the square root of a matrix, which has
        no unique answer. Cholesky is the default choice due to its
        speed. Typically your alternative choice will be
        scipy.linalg.sqrtm. Different choices affect how the sigma points
        are arranged relative to the eigenvectors of the covariance matrix.
        Usually this will not matter to you; if so the default cholesky()
        yields maximal performance. As of van der Merwe's dissertation of
        2004 [6] this was not a well reseached area so I have no advice
        to give you.

        If your method returns a triangular matrix it must be upper
        triangular. Do not use numpy.linalg.cholesky - for historical
        reasons it returns a lower triangular matrix. The SciPy version
        does the right thing as far as this class is concerned.

    x_mean_fn : callable  (sigma_points, weights), optional
        Function that computes the mean of the provided sigma points
        and weights. Use this if your state variable contains nonlinear
        values such as angles which cannot be summed.

        .. code-block:: Python

            def state_mean(sigmas, Wm):
                x = np.zeros(3)
                sum_sin, sum_cos = 0., 0.

                for i in range(len(sigmas)):
                    s = sigmas[i]
                    x[0] += s[0] * Wm[i]
                    x[1] += s[1] * Wm[i]
                    sum_sin += sin(s[2])*Wm[i]
                    sum_cos += cos(s[2])*Wm[i]
                x[2] = atan2(sum_sin, sum_cos)
                return x

    z_mean_fn : callable  (sigma_points, weights), optional
        Same as x_mean_fn, except it is called for sigma points which
        form the measurements after being passed through hx().

    residual_x : callable (x, y), optional
    residual_z : callable (x, y), optional
        Function that computes the residual (difference) between x and y.
        You will have to supply this if your state variable cannot support
        subtraction, such as angles (359-1 degreees is 2, not 358). x and y
        are state vectors, not scalars. One is for the state variable,
        the other is for the measurement state.

        .. code-block:: Python

            def residual(a, b):
                y = a[0] - b[0]
                if y > np.pi:
                    y -= 2*np.pi
                if y < -np.pi:
                    y += 2*np.pi
                return y

    state_add: callable (x, y), optional, default np.add
        Function that subtracts two state vectors, returning a new
        state vector. Used during update to compute `x + K@y`
        You will have to supply this if your state variable does not
        suport addition, such as it contains angles.

    Attributes
    ----------

    x : numpy.array(dim_x)
        state estimate vector

    P : numpy.array(dim_x, dim_x)
        covariance estimate matrix

    x_prior : numpy.array(dim_x)
        Prior (predicted) state estimate. The *_prior and *_post attributes
        are for convienence; they store the  prior and posterior of the
        current epoch. Read Only.

    P_prior : numpy.array(dim_x, dim_x)
        Prior (predicted) state covariance matrix. Read Only.

    x_post : numpy.array(dim_x)
        Posterior (updated) state estimate. Read Only.

    P_post : numpy.array(dim_x, dim_x)
        Posterior (updated) state covariance matrix. Read Only.

    z : ndarray
        Last measurement used in update(). Read only.

    R : numpy.array(dim_z, dim_z)
        measurement noise matrix

    Q : numpy.array(dim_x, dim_x)
        process noise matrix

    K : numpy.array
        Kalman gain

    y : numpy.array
        innovation residual

    log_likelihood : scalar
        Log likelihood of last measurement update.

    likelihood : float
        likelihood of last measurment. Read only.

        Computed from the log-likelihood. The log-likelihood can be very
        small,  meaning a large negative value such as -28000. Taking the
        exp() of that results in 0.0, which can break typical algorithms
        which multiply by this value, so by default we always return a
        number >= sys.float_info.min.

    mahalanobis : float
        mahalanobis distance of the measurement. Read only.

    inv : function, default numpy.linalg.inv
        If you prefer another inverse function, such as the Moore-Penrose
        pseudo inverse, set it to that instead:

        .. code-block:: Python

            kf.inv = np.linalg.pinv


    Examples
    --------

    Simple example of a linear order 1 kinematic filter in 2D. There is no
    need to use a UKF for this example, but it is easy to read.

    >>> def fx(x, dt):
    >>>     # state transition function - predict next state based
    >>>     # on constant velocity model x = vt + x_0
    >>>     F = np.array([[1, dt, 0, 0],
    >>>                   [0, 1, 0, 0],
    >>>                   [0, 0, 1, dt],
    >>>                   [0, 0, 0, 1]], dtype=float)
    >>>     return np.dot(F, x)
    >>>
    >>> def hx(x):
    >>>    # measurement function - convert state into a measurement
    >>>    # where measurements are [x_pos, y_pos]
    >>>    return np.array([x[0], x[2]])
    >>>
    >>> dt = 0.1
    >>> # create sigma points to use in the filter. This is standard for Gaussian processes
    >>> points = MerweScaledSigmaPoints(4, alpha=.1, beta=2., kappa=-1)
    >>>
    >>> kf = UnscentedKalmanFilter(dim_x=4, dim_z=2, dt=dt, fx=fx, hx=hx, points=points)
    >>> kf.x = np.array([-1., 1., -1., 1]) # initial state
    >>> kf.P *= 0.2 # initial uncertainty
    >>> z_std = 0.1
    >>> kf.R = np.diag([z_std**2, z_std**2]) # 1 standard
    >>> kf.Q = Q_discrete_white_noise(dim=2, dt=dt, var=0.01**2, block_size=2)
    >>>
    >>> zs = [[i+randn()*z_std, i+randn()*z_std] for i in range(50)] # measurements
    >>> for z in zs:
    >>>     kf.predict()
    >>>     kf.update(z)
    >>>     print(kf.x, 'log-likelihood', kf.log_likelihood)

    For in depth explanations see my book Kalman and Bayesian Filters in Python
    https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

    Also see the filterpy/kalman/tests subdirectory for test code that
    may be illuminating.

    References
    ----------

    .. [1] Julier, Simon J. "The scaled unscented transformation,"
        American Control Converence, 2002, pp 4555-4559, vol 6.

        Online copy:
        https://www.cs.unc.edu/~welch/kalman/media/pdf/ACC02-IEEE1357.PDF

    .. [2] E. A. Wan and R. Van der Merwe, “The unscented Kalman filter for
        nonlinear estimation,” in Proc. Symp. Adaptive Syst. Signal
        Process., Commun. Contr., Lake Louise, AB, Canada, Oct. 2000.

        Online Copy:
        https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf

    .. [3] S. Julier, J. Uhlmann, and H. Durrant-Whyte. "A new method for
           the nonlinear transformation of means and covariances in filters
           and estimators," IEEE Transactions on Automatic Control, 45(3),
           pp. 477-482 (March 2000).

    .. [4] E. A. Wan and R. Van der Merwe, “The Unscented Kalman filter for
           Nonlinear Estimation,” in Proc. Symp. Adaptive Syst. Signal
           Process., Commun. Contr., Lake Louise, AB, Canada, Oct. 2000.

           https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf

    .. [5] Wan, Merle "The Unscented Kalman Filter," chapter in *Kalman
           Filtering and Neural Networks*, John Wiley & Sons, Inc., 2001.

    .. [6] R. Van der Merwe "Sigma-Point Kalman Filters for Probabilitic
           Inference in Dynamic State-Space Models" (Doctoral dissertation)
    """
    # overridable parameters guarded by checks
    x = properties.ClassProperty('x')
    P = properties.ClassProperty('P')
    Q = properties.ClassProperty('Q')
    F = properties.ClassProperty('F')
    H = properties.ClassProperty('H')
    R = properties.ClassProperty('R')
    M = properties.ClassProperty('M')
    z = properties.ClassProperty('z')

    def __init__(self, dim_x, dim_z, dt, hx, fx, points,
                 sqrt_fn=None, x_mean_fn=None, z_mean_fn=None,
                 residual_x=None,
                 residual_z=None,
                 state_add=None):
        """
        Create a Kalman filter. You are responsible for setting the
        various state variables to reasonable values; the defaults below will
        not give you a functional filter.
        """

        # Set templates that will hook the assignments and cast to
        # the specific shape
        self.x = properties.MatrixTemplate(dim_x, 1)
        self.P = properties.MatrixTemplate(dim_x, dim_x)
        self.Q = properties.MatrixTemplate(dim_x, dim_x)
        self.F = properties.MatrixFunctionTemplate(dim_x, dim_x)
        self.H = properties.MatrixFunctionTemplate(dim_z, dim_x)
        self.R = properties.MatrixTemplate(dim_z, dim_z)
        self.M = properties.MatrixTemplate(dim_x, dim_z)
        self.z = properties.MatrixTemplate(dim_z, 1)

        #pylint: disable=too-many-arguments

        self.x = zeros(dim_x)
        self.P = eye(dim_x)
        self.x_prior = np.copy(self.x)
        self.P_prior = np.copy(self.P)
        self.Q = eye(dim_x)
        self.R = eye(dim_z)
        self._dim_x = dim_x
        self._dim_z = dim_z
        self.points_fn = points
        self._dt = dt
        self._num_sigmas = points.num_sigmas()
        self.hx = hx
        self.fx = fx
        self.x_mean = x_mean_fn
        self.z_mean = z_mean_fn

        # Only computed only if requested via property
        self._log_likelihood = log(sys.float_info.min)
        self._likelihood = sys.float_info.min
        self._mahalanobis = None

        if sqrt_fn is None:
            self.msqrt = cholesky
        else:
            self.msqrt = sqrt_fn

        # weights for the means and covariances.
        self.Wm, self.Wc = points.Wm, points.Wc

        if residual_x is None:
            self.residual_x = np.subtract
        else:
            self.residual_x = residual_x

        if residual_z is None:
            self.residual_z = np.subtract
        else:
            self.residual_z = residual_z

        if state_add is None:
            self.state_add = np.add
        else:
            self.state_add = state_add

        # sigma points transformed through f(x) and h(x)
        # variables for efficiency so we don't recreate every update

        self.sigmas_f = zeros((self._num_sigmas, self._dim_x))
        self.sigmas_h = zeros((self._num_sigmas, self._dim_z))

        self.K = np.zeros((dim_x, dim_z))    # Kalman gain
        self.y = np.zeros((dim_z))           # residual
        self.z = np.array([[None]*dim_z]).T  # measurement
        self.S = np.zeros((dim_z, dim_z))    # system uncertainty
        self.SI = np.zeros((dim_z, dim_z))   # inverse system uncertainty

        self.inv = np.linalg.inv

        # these will always be a copy of x,P after predict() is called
        self.x_prior = self.x.copy()
        self.P_prior = self.P.copy()

        # these will always be a copy of x,P after update() is called
        self.x_post = self.x.copy()
        self.P_post = self.P.copy()

    def predict(self, dt=None, UT=None, fx=None, **fx_args):
        r"""
        Performs the predict step of the UKF. On return, self.x and
        self.P contain the predicted state (x) and covariance (P). '

        Important: this MUST be called before update() is called for the first
        time.

        Parameters
        ----------

        dt : double, optional
            If specified, the time step to be used for this prediction.
            self._dt is used if this is not provided.

        fx : callable f(x, dt, **fx_args), optional
            State transition function. If not provided, the default
            function passed in during construction will be used.

        UT : function(sigmas, Wm, Wc, noise_cov), optional
            Optional function to compute the unscented transform for the sigma
            points passed through hx. Typically the default function will
            work - you can use x_mean_fn and z_mean_fn to alter the behavior
            of the unscented transform.

        **fx_args : keyword arguments
            optional keyword arguments to be passed into f(x).
        """

        if dt is None:
            dt = self._dt

        if UT is None:
            UT = unscented_transform

        # calculate sigma points for given mean and covariance
        self.compute_process_sigmas(dt, fx, **fx_args)

        #and pass sigmas through the unscented transform to compute prior
        self.x, self.P = UT(self.sigmas_f, self.Wm, self.Wc, self.Q,
                            self.x_mean, self.residual_x)

        # update sigma points to reflect the new variance of the points
        self.sigmas_f = self.points_fn.sigma_points(self.x, self.P)

        # save prior
        self.x_prior = np.copy(self.x)
        self.P_prior = np.copy(self.P)

    def update(self, z, R=None, UT=None, hx=None, **hx_args):
        """
        Update the UKF with the given measurements. On return,
        self.x and self.P contain the new mean and covariance of the filter.

        Parameters
        ----------

        z : numpy.array of shape (dim_z)
            measurement vector

        R : numpy.array((dim_z, dim_z)), optional
            Measurement noise. If provided, overrides self.R for
            this function call.

        UT : function(sigmas, Wm, Wc, noise_cov), optional
            Optional function to compute the unscented transform for the sigma
            points passed through hx. Typically the default function will
            work - you can use x_mean_fn and z_mean_fn to alter the behavior
            of the unscented transform.

        hx : callable h(x, **hx_args), optional
            Measurement function. If not provided, the default
            function passed in during construction will be used.

        **hx_args : keyword argument
            arguments to be passed into h(x) after x -> h(x, **hx_args)
        """
        if z is None:
            self.z = np.array([[None]*self._dim_z]).T
            self.x_post = self.x.copy()
            self.P_post = self.P.copy()
            return
        else:
            z = properties.as_matrix((self._dim_z, 1), z, 'z')

        if hx is None:
            hx = self.hx

        if UT is None:
            UT = unscented_transform

        if R is None:
            R = self.R
        elif isscalar(R):
            R = eye(self._dim_z) * R
        else:
            R = properties.as_matrix((self._dim_z,)*2, R, 'R')

        # pass prior sigmas through h(x) to get measurement sigmas
        # the shape of sigmas_h will vary if the shape of z varies, so
        # recreate each time
        sigmas_h = [hx(s, **hx_args) for s in self.sigmas_f]
        sigmas_h = np.reshape(sigmas_h, [-1, self._dim_z, 1])
        
        # mean and covariance of prediction passed through unscented transform
        zp, self.S = UT(self.sigmas_h, self.Wm, self.Wc, R, self.z_mean, self.residual_z)
        self.SI = self.inv(self.S)

        # compute cross variance of the state and the measurements
        Pxz = self.cross_variance(self.x, zp, self.sigmas_f, self.sigmas_h)


        self.K = dot(Pxz, self.SI)        # Kalman gain
        self.y = self.residual_z(z, zp)   # residual

        # update Gaussian state estimate (x, P)
        self.x = self.state_add(self.x, dot(self.K, self.y))
        self.P = self.P - dot(self.K, dot(self.S, self.K.T))

        # save measurement and posterior state
        self.z = deepcopy(z)
        self.x_post = self.x.copy()
        self.P_post = self.P.copy()

        # set to None to force recompute
        self._log_likelihood = None
        self._likelihood = None
        self._mahalanobis = None

    def cross_variance(self, x, z, sigmas_f, sigmas_h):
        """
        Compute cross variance of the state `x` and measurement `z`.
        """

        Pxz = zeros((sigmas_f.shape[1], sigmas_h.shape[1]))
        N = sigmas_f.shape[0]
        x = np.reshape(x, (-1,))
        z = np.reshape(z, (-1,))
        for i in range(N):
            dx = self.residual_x(sigmas_f[i], x)
            dz = self.residual_z(sigmas_h[i], z)
            Pxz += self.Wc[i] * outer(dx, dz)
        return Pxz

    def compute_process_sigmas(self, dt, fx=None, **fx_args):
        """
        computes the values of sigmas_f. Normally a user would not call
        this, but it is useful if you need to call update more than once
        between calls to predict (to update for multiple simultaneous
        measurements), so the sigmas correctly reflect the updated state
        x, P.
        """

        if fx is None:
            fx = self.fx

        # calculate sigma points for given mean and covariance
        sigmas = self.points_fn.sigma_points(self.x, self.P)

        for i, s in enumerate(sigmas):
            self.sigmas_f[i] = np.squeeze(fx(s, dt, **fx_args))

    def batch_filter(self, zs, Rs=None, dts=None, UT=None, saver=None):
        """
        Performs the UKF filter over the list of measurement in `zs`.

        Parameters
        ----------

        zs : list-like
            list of measurements at each time step `self._dt` Missing
            measurements must be represented by 'None'.

        Rs : None, np.array or list-like, default=None
            optional list of values to use for the measurement error
            covariance R.

            If Rs is None then self.R is used for all epochs.

            If it is a list of matrices or a 3D array where
            len(Rs) == len(zs), then it is treated as a list of R values, one
            per epoch. This allows you to have varying R per epoch.

        dts : None, scalar or list-like, default=None
            optional value or list of delta time to be passed into predict.

            If dtss is None then self.dt is used for all epochs.

            If it is a list where len(dts) == len(zs), then it is treated as a
            list of dt values, one per epoch. This allows you to have varying
            epoch durations.

        UT : function(sigmas, Wm, Wc, noise_cov), optional
            Optional function to compute the unscented transform for the sigma
            points passed through hx. Typically the default function will
            work - you can use x_mean_fn and z_mean_fn to alter the behavior
            of the unscented transform.

        saver : filterpy.common.Saver, optional
            filterpy.common.Saver object. If provided, saver.save() will be
            called after every epoch

        Returns
        -------

        means: ndarray((n,dim_x,1))
            array of the state for each time step after the update. Each entry
            is an np.array. In other words `means[k,:]` is the state at step
            `k`.

        covariance: ndarray((n,dim_x,dim_x))
            array of the covariances for each time step after the update.
            In other words `covariance[k,:,:]` is the covariance at step `k`.

        Examples
        --------

        .. code-block:: Python

            # this example demonstrates tracking a measurement where the time
            # between measurement varies, as stored in dts The output is then smoothed
            # with an RTS smoother.

            zs = [t + random.randn()*4 for t in range (40)]

            (mu, cov, _, _) = ukf.batch_filter(zs, dts=dts)
            (xs, Ps, Ks) = ukf.rts_smoother(mu, cov)

        """
        #pylint: disable=too-many-arguments

        try:
            z = zs[0]
        except TypeError:
            raise TypeError('zs must be list-like')

        if self._dim_z == 1:
            if not(isscalar(z) or (z.ndim == 1 and len(z) == 1)):
                raise TypeError('zs must be a list of scalars or 1D, 1 element arrays')
        else:
            if len(z) != self._dim_z:
                raise TypeError(
                    'each element in zs must be a 1D array of length {}'.format(self._dim_z))

        z_n = np.size(zs, 0)
        if Rs is None:
            Rs = [self.R] * z_n

        if dts is None:
            dts = [self._dt] * z_n

        # mean estimates from Kalman Filter
        if self.x.ndim == 1:
            means = zeros((z_n, self._dim_x))
        else:
            means = zeros((z_n, self._dim_x, 1))

        # state covariances from Kalman Filter
        covariances = zeros((z_n, self._dim_x, self._dim_x))

        for i, (z, r, dt) in enumerate(zip(zs, Rs, dts)):
            self.predict(dt=dt, UT=UT)
            self.update(z, r, UT=UT)
            means[i, :] = self.x
            covariances[i, :, :] = self.P

            if saver is not None:
                saver.save()

        return (means, covariances)

    def rts_smoother(self, Xs, Ps, Qs=None, dts=None, UT=None):
        """
        Runs the Rauch-Tung-Striebel Kalman smoother on a set of
        means and covariances computed by the UKF. The usual input
        would come from the output of `batch_filter()`.

        Parameters
        ----------

        Xs : numpy.array
           array of the means (state variable x) of the output of a Kalman
           filter.

        Ps : numpy.array
            array of the covariances of the output of a kalman filter.

        Qs: list-like collection of numpy.array, optional
            Process noise of the Kalman filter at each time step. Optional,
            if not provided the filter's self.Q will be used

        dt : optional, float or array-like of float
            If provided, specifies the time step of each step of the filter.
            If float, then the same time step is used for all steps. If
            an array, then each element k contains the time  at step k.
            Units are seconds.

        UT : function(sigmas, Wm, Wc, noise_cov), optional
            Optional function to compute the unscented transform for the sigma
            points passed through hx. Typically the default function will
            work - you can use x_mean_fn and z_mean_fn to alter the behavior
            of the unscented transform.

        Returns
        -------

        x : numpy.ndarray
           smoothed means

        P : numpy.ndarray
           smoothed state covariances

        K : numpy.ndarray
            smoother gain at each step

        Examples
        --------

        .. code-block:: Python

            zs = [t + random.randn()*4 for t in range (40)]

            (mu, cov, _, _) = kalman.batch_filter(zs)
            (x, P, K) = rts_smoother(mu, cov, fk.F, fk.Q)
        """
        #pylint: disable=too-many-locals, too-many-arguments

        if len(Xs) != len(Ps):
            raise ValueError('Xs and Ps must have the same length')

        n, dim_x = Xs.shape

        if dts is None:
            dts = [self._dt] * n
        elif isscalar(dts):
            dts = [dts] * n

        if Qs is None:
            Qs = [self.Q] * n

        if UT is None:
            UT = unscented_transform

        # smoother gain
        Ks = zeros((n, dim_x, dim_x))

        num_sigmas = self._num_sigmas

        xs, ps = Xs.copy(), Ps.copy()
        sigmas_f = zeros((num_sigmas, dim_x))

        for k in reversed(range(n-1)):
            # create sigma points from state estimate, pass through state func
            sigmas = self.points_fn.sigma_points(xs[k], ps[k])
            for i in range(num_sigmas):
                sigmas_f[i] = self.fx(sigmas[i], dts[k])

            xb, Pb = UT(
                sigmas_f, self.Wm, self.Wc, self.Q,
                self.x_mean, self.residual_x)

            # compute cross variance
            Pxb = 0
            for i in range(num_sigmas):
                y = self.residual_x(sigmas_f[i], xb)
                z = self.residual_x(sigmas[i], Xs[k])
                Pxb += self.Wc[i] * outer(z, y)

            # compute gain
            K = dot(Pxb, self.inv(Pb))

            # update the smoothed estimates
            xs[k] += dot(K, self.residual_x(xs[k+1], xb))
            ps[k] += dot(K, ps[k+1] - Pb).dot(K.T)
            Ks[k] = K

        return (xs, ps, Ks)

    @property
    def log_likelihood(self):
        """
        log-likelihood of the last measurement.
        """
        if self._log_likelihood is None:
            self._log_likelihood = logpdf(x=self.y, cov=self.S)
        return self._log_likelihood

    @property
    def likelihood(self):
        """
        Computed from the log-likelihood. The log-likelihood can be very
        small,  meaning a large negative value such as -28000. Taking the
        exp() of that results in 0.0, which can break typical algorithms
        which multiply by this value, so by default we always return a
        number >= sys.float_info.min.
        """
        if self._likelihood is None:
            self._likelihood = exp(self.log_likelihood)
            if self._likelihood == 0:
                self._likelihood = sys.float_info.min
        return self._likelihood

    @property
    def mahalanobis(self):
        """"
        Mahalanobis distance of measurement. E.g. 3 means measurement
        was 3 standard deviations away from the predicted value.

        Returns
        -------
        mahalanobis : float
        """
        if self._mahalanobis is None:
            self._mahalanobis = sqrt(float(dot(dot(self.y.T, self.SI), self.y)))
        return self._mahalanobis

    def __repr__(self):
        return '\n'.join([
            'UnscentedKalmanFilter object',
            pretty_str('x', self.x),
            pretty_str('P', self.P),
            pretty_str('x_prior', self.x_prior),
            pretty_str('P_prior', self.P_prior),
            pretty_str('Q', self.Q),
            pretty_str('R', self.R),
            pretty_str('S', self.S),
            pretty_str('K', self.K),
            pretty_str('y', self.y),
            pretty_str('log-likelihood', self.log_likelihood),
            pretty_str('likelihood', self.likelihood),
            pretty_str('mahalanobis', self.mahalanobis),
            pretty_str('sigmas_f', self.sigmas_f),
            pretty_str('h', self.sigmas_h),
            pretty_str('Wm', self.Wm),
            pretty_str('Wc', self.Wc),
            pretty_str('residual_x', self.residual_x),
            pretty_str('residual_z', self.residual_z),
            pretty_str('msqrt', self.msqrt),
            pretty_str('hx', self.hx),
            pretty_str('fx', self.fx),
            pretty_str('x_mean', self.x_mean),
            pretty_str('z_mean', self.z_mean)
            ])