Exemplo n.º 1
0
def test_1d_0P():
    global inf
    f = KalmanFilter (dim_x=2, dim_z=1)
    inf = InformationFilter (dim_x=2, dim_z=1)

    f.x = np.array([[2.],
                    [0.]])       # initial state (location and velocity)

    f.F = (np.array([[1., 1.],
                     [0., 1.]]))    # state transition matrix

    f.H = np.array([[1., 0.]])    # Measurement function
    f.R = np.array([[5.]])                 # state uncertainty
    f.Q = np.eye(2)*0.0001                 # process uncertainty
    f.P = np.diag([20., 20.])

    inf.x = f.x.copy()
    inf.F = f.F.copy()
    inf.H = np.array([[1.,0.]])    # Measurement function
    inf.R_inv *= 1./5                 # state uncertainty
    inf.Q = np.eye(2)*0.0001
    inf.P_inv = 0.000000000000000000001
    #inf.P_inv = inv(f.P)

    m = []
    r = []
    r2 = []


    zs = []
    for t in range (50):
        # create measurement = t plus white noise
        z = t + random.randn()* np.sqrt(5)
        zs.append(z)

        # perform kalman filtering
        f.predict()
        f.update(z)

        inf.predict()
        inf.update(z)

        try:
            print(t, inf.P)
        except:
            pass

        # save data
        r.append (f.x[0,0])
        r2.append (inf.x[0,0])
        m.append(z)

    #assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}'

    if DO_PLOT:
        plt.plot(m)
        plt.plot(r)
        plt.plot(r2)
Exemplo n.º 2
0
def test_against_kf():
    inv = np.linalg.inv

    dt = 1.0
    IM = np.eye(2)
    Q = np.array([[.25, 0.5], [0.5, 1]])

    F = np.array([[1, dt], [0, 1]])
    #QI = inv(Q)
    P = inv(IM)


    from filterpy.kalman import InformationFilter
    from filterpy.common import Q_discrete_white_noise

    #f = IF2(2, 1)
    r_std = .2
    R = np.array([[r_std*r_std]])
    RI = inv(R)

    '''f.F = F.copy()
    f.H = np.array([[1, 0.]])
    f.RI = RI.copy()
    f.Q = Q.copy()
    f.IM = IM.copy()'''


    kf = KalmanFilter(2, 1)
    kf.F = F.copy()
    kf.H = np.array([[1, 0.]])
    kf.R = R.copy()
    kf.Q = Q.copy()

    f0 = InformationFilter(2, 1)
    f0.F = F.copy()
    f0.H = np.array([[1, 0.]])
    f0.R_inv = RI.copy()
    f0.Q = Q.copy()



    #f.IM = np.zeros((2,2))


    for i in range(1, 50):
        z = i + (np.random.rand() * r_std)
        f0.predict()
        #f.predict()
        kf.predict()


        f0.update(z)
        #f.update(z)
        kf.update(z)

        print(f0.x.T, kf.x.T)
        assert np.allclose(f0.x, kf.x)
Exemplo n.º 3
0
def test_1d_0P():
    global inf
    f = KalmanFilter(dim_x=2, dim_z=1)
    inf = InformationFilter(dim_x=2, dim_z=1)

    f.x = np.array([[2.], [0.]])  # initial state (location and velocity)

    f.F = (np.array([[1., 1.], [0., 1.]]))  # state transition matrix

    f.H = np.array([[1., 0.]])  # Measurement function
    f.R = np.array([[5.]])  # state uncertainty
    f.Q = np.eye(2) * 0.0001  # process uncertainty
    f.P = np.diag([20., 20.])

    inf.x = f.x.copy()
    inf.F = f.F.copy()
    inf.H = np.array([[1., 0.]])  # Measurement function
    inf.R_inv *= 1. / 5  # state uncertainty
    inf.Q = np.eye(2) * 0.0001
    inf.P_inv = 0.000000000000000000001
    #inf.P_inv = inv(f.P)

    m = []
    r = []
    r2 = []

    zs = []
    for t in range(50):
        # create measurement = t plus white noise
        z = t + random.randn() * np.sqrt(5)
        zs.append(z)

        # perform kalman filtering
        f.predict()
        f.update(z)

        inf.predict()
        inf.update(z)

        try:
            print(t, inf.P)
        except:
            pass

        # save data
        r.append(f.x[0, 0])
        r2.append(inf.x[0, 0])
        m.append(z)

    #assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}'

    if DO_PLOT:
        plt.plot(m)
        plt.plot(r)
        plt.plot(r2)
Exemplo n.º 4
0
def test_1d_0P():
    f = KalmanFilter (dim_x=2, dim_z=1)
    inf = InformationFilter (dim_x=2, dim_z=1)

    f.x = np.array([[2.],
                    [0.]])       # initial state (location and velocity)

    inf.x = f.x.copy()
    f.F = (np.array([[1.,1.],
                     [0.,1.]]))    # state transition matrix

    inf.F = f.F.copy()
    f.H = np.array([[1.,0.]])    # Measurement function
    inf.H = np.array([[1.,0.]])    # Measurement function
    f.R = 5.                 # state uncertainty
    inf.R_inv = 1./5                 # state uncertainty
    f.Q = 0.0001                 # process uncertainty
    inf.Q = 0.0001
    f.P *= 20
    inf.P_inv = 0
    #inf.P_inv = inv(f.P)

    m = []
    r = []
    r2 = []


    zs = []
    for t in range (100):
        # create measurement = t plus white noise
        z = t + random.randn()*20
        zs.append(z)

        # perform kalman filtering
        f.predict()
        f.update(z)

        inf.predict()
        inf.update(z)

        # save data
        r.append (f.x[0,0])
        r2.append (inf.x[0,0])
        m.append(z)

        #assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12

    if DO_PLOT:
        plt.plot(m)
        plt.plot(r)
        plt.plot(r2)
Exemplo n.º 5
0
def test_against_kf():
    inv = np.linalg.inv

    dt = 1.0
    IM = np.eye(2)
    Q = np.array([[.25, 0.5], [0.5, 1]])

    F = np.array([[1, dt], [0, 1]])
    #QI = inv(Q)
    P = inv(IM)

    from filterpy.kalman import InformationFilter
    from filterpy.common import Q_discrete_white_noise

    #f = IF2(2, 1)
    r_std = .2
    R = np.array([[r_std * r_std]])
    RI = inv(R)
    '''f.F = F.copy()
    f.H = np.array([[1, 0.]])
    f.RI = RI.copy()
    f.Q = Q.copy()
    f.IM = IM.copy()'''

    kf = KalmanFilter(2, 1)
    kf.F = F.copy()
    kf.H = np.array([[1, 0.]])
    kf.R = R.copy()
    kf.Q = Q.copy()

    f0 = InformationFilter(2, 1)
    f0.F = F.copy()
    f0.H = np.array([[1, 0.]])
    f0.R_inv = RI.copy()
    f0.Q = Q.copy()

    #f.IM = np.zeros((2,2))

    for i in range(1, 50):
        z = i + (np.random.rand() * r_std)
        f0.predict()
        #f.predict()
        kf.predict()

        f0.update(z)
        #f.update(z)
        kf.update(z)

        print(f0.x.T, kf.x.T)
        assert np.allclose(f0.x, kf.x)