def update(self, z, R=None, hx_args=()): """ Update the CKF with the given measurements. On return, self.x and self.P contain the new mean and covariance of the filter. Parameters ---------- z : numpy.array of shape (dim_z) measurement vector R : numpy.array((dim_z, dim_z)), optional Measurement noise. If provided, overrides self.R for this function call. hx_args : tuple, optional, default (,) arguments to be passed into Hx function after the required state variable. """ if z is None: return if not isinstance(hx_args, tuple): hx_args = (hx_args, ) if R is None: R = self.R elif isscalar(R): R = eye(self._dim_z) * R for k in range(self._num_sigmas): self.sigmas_h[k] = self.hx(self.sigmas_f[k], *hx_args) # mean and covariance of prediction passed through unscented transform #zp, Pz = UT(self.sigmas_h, self.Wm, self.Wc, R, self.z_mean, self.residual_z) zp, Pz = ckf_transform(self.sigmas_h, R) # compute cross variance of the state and the measurements Pxz = zeros((self._dim_x, self._dim_z)) m = self._num_sigmas # literaure uses m for scaling factor xf = self.x.flatten() zpf = zp.flatten() for k in range(m): dx = self.sigmas_f[k] - xf dz = self.sigmas_h[k] - zpf Pxz += outer(dx, dz) Pxz /= m self.K = dot(Pxz, inv(Pz)) # Kalman gain self.y = self.residual_z(z, zp) #residual self.x = self.x + dot(self.K, self.y) self.P = self.P - dot(self.K, Pz).dot(self.K.T) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=Pz) self.likelihood = math.exp(self.log_likelihood) if self.likelihood == 0: self.likelihood = sys.float_info.min
def log_likelihood(self): """ log-likelihood of the last measurement. """ if self._log_likelihood is None: self._log_likelihood = logpdf(x=self.y, cov=self.S) return self._log_likelihood
def log_likelihood(self, z): """ log likelihood of the measurement `z`. """ if z is None: return math.log(sys.float_info.min) else: return logpdf(z, dot(self.H, self.x), self.S)
def update(self, z, R=None, UT=None, hx_args=()): """ Update the UKF with the given measurements. On return, self.x and self.P contain the new mean and covariance of the filter. Parameters ---------- z : numpy.array of shape (dim_z) measurement vector R : numpy.array((dim_z, dim_z)), optional Measurement noise. If provided, overrides self.R for this function call. UT : function(sigmas, Wm, Wc, noise_cov), optional Optional function to compute the unscented transform for the sigma points passed through hx. Typically the default function will work - you can use x_mean_fn and z_mean_fn to alter the behavior of the unscented transform. hx_args : tuple, optional, default (,) arguments to be passed into Hx function after the required state variable. """ if z is None: return if not isinstance(hx_args, tuple): hx_args = (hx_args,) if UT is None: UT = unscented_transform if R is None: R = self.R elif isscalar(R): R = eye(self._dim_z) * R for i in range(self._num_sigmas): self.sigmas_h[i] = self.hx(self.sigmas_f[i], *hx_args) # mean and covariance of prediction passed through unscented transform zp, Pz = UT(self.sigmas_h, self.Wm, self.Wc, R, self.z_mean, self.residual_z) # compute cross variance of the state and the measurements Pxz = zeros((self._dim_x, self._dim_z)) for i in range(self._num_sigmas): dx = self.residual_x(self.sigmas_f[i], self.x) dz = self.residual_z(self.sigmas_h[i], zp) Pxz += self.Wc[i] * outer(dx, dz) self.K = dot(Pxz, inv(Pz)) # Kalman gain self.y = self.residual_z(z, zp) # residual self.x = self.x + dot(self.K, self.y) self.P = self.P - dot(self.K, Pz).dot(self.K.T) self.log_likelihood = logpdf(self.y, np.zeros(len(self.y)), Pz)
def update(self, z, R=None, UT=None, hx_args=()): """ Update the UKF with the given measurements. On return, self.x and self.P contain the new mean and covariance of the filter. Parameters ---------- z : numpy.array of shape (dim_z) measurement vector R : numpy.array((dim_z, dim_z)), optional Measurement noise. If provided, overrides self.R for this function call. UT : function(sigmas, Wm, Wc, noise_cov), optional Optional function to compute the unscented transform for the sigma points passed through hx. Typically the default function will work - you can use x_mean_fn and z_mean_fn to alter the behavior of the unscented transform. hx_args : tuple, optional, default (,) arguments to be passed into Hx function after the required state variable. """ if z is None: return if not isinstance(hx_args, tuple): hx_args = (hx_args, ) if UT is None: UT = unscented_transform if R is None: R = self.R elif isscalar(R): R = eye(self._dim_z) * R for i in range(self._num_sigmas): self.sigmas_h[i] = self.hx(self.sigmas_f[i], *hx_args) # mean and covariance of prediction passed through unscented transform zp, Pz = UT(self.sigmas_h, self.Wm, self.Wc, R, self.z_mean, self.residual_z) # compute cross variance of the state and the measurements Pxz = zeros((self._dim_x, self._dim_z)) for i in range(self._num_sigmas): dx = self.residual_x(self.sigmas_f[i], self.x) dz = self.residual_z(self.sigmas_h[i], zp) Pxz += self.Wc[i] * outer(dx, dz) self.K = dot(Pxz, inv(Pz)) # Kalman gain self.y = self.residual_z(z, zp) # residual self.x = self.x + dot(self.K, self.y) self.P = self.P - dot(self.K, Pz).dot(self.K.T) self.log_likelihood = logpdf(self.y, np.zeros(len(self.y)), Pz)
def update(self, z, R_inv=None): """ Add a new measurement (z) to the kalman filter. If z is None, nothing is changed. Parameters ---------- z : np.array measurement for this update. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. """ if z is None: return if R_inv is None: R_inv = self.R_inv elif np.isscalar(R_inv): R_inv = eye(self.dim_z) * R_inv # rename for readability and a tiny extra bit of speed H = self.H H_T = H.T P_inv = self.P_inv x = self.x if self._no_information: self.x = dot(P_inv, x) + dot(H_T, R_inv).dot(z) self.P_inv = P_inv + dot(H_T, R_inv).dot(H) self.log_likelihood = math.log(sys.float_info.min) self.likelihood = sys.float_info.min else: # y = z - Hx # error (residual) between measurement and prediction self.y = z - dot(H, x) # S = HPH' + R # project system uncertainty into measurement space self.S = P_inv + dot(H_T, R_inv).dot(H) self.K = dot(self.inv(self.S), H_T).dot(R_inv) # x = x + Ky # predict new x with residual scaled by the kalman gain self.x = x + dot(self.K, self.y) self.P_inv = P_inv + dot(H_T, R_inv).dot(H) self.z = np.copy(reshape_z(z, self.dim_z, np.ndim(self.x))) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=self.S) self.likelihood = math.exp(self.log_likelihood) if self.likelihood == 0: self.likelihood = sys.float_info.min
def update(self, z, R=None, H=None): """ Add a new measurement (z) to the Kalman filter. If z is None, nothing is changed. Parameters ---------- z : (dim_z, 1): array_like measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be convertible to a column vector. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. H : np.array, or None Optionally provide H to override the measurement function for this one call, otherwise self.H will be used. """ if z is None: return z = _reshape_z(z, self.dim_z, self.x.ndim) if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R if H is None: H = self.H # y = z - Hx # error (residual) between measurement and prediction self.y = z - dot(H, self.x) # common subexpression for speed PHT = dot(self.P, H.T) # S = HPH' + R # project system uncertainty into measurement space self.S = dot(H, PHT) + R # K = PH'inv(S) # map system uncertainty into kalman gain self.K = dot(PHT, self.inv(self.S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self.x = self.x + dot(self.K, self.y) # P = (I-KH)P(I-KH)' + KRK' I_KH = self._I - dot(self.K, H) self.P = dot(dot(I_KH, self.P), I_KH.T) + dot(dot(self.K, R), self.K.T) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=self.S)
def test_logpdf(): assert 3.9 < exp(logpdf(1, 1, .01)) < 4. assert 3.9 < exp(logpdf([1], [1], .01)) < 4. assert 3.9 < exp(logpdf([[1]], [[1]], .01)) < 4. logpdf([1., 2], [1.1, 2], cov=np.array([[1., 2], [2, 5]]), allow_singular=False) logpdf([1., 2], [1.1, 2], cov=np.array([[1., 2], [2, 5]]), allow_singular=True)
def log_likelihood_of(kf, z): """ log likelihood of the measurement `z`. This should only be called after a call to update(). Calling after predict() will yield an incorrect result.""" if z is None: return kf.log(sys.float_info.min) return logpdf(z, kf.z, kf.S)
def test_logpdf2(): z = np.array([1., 2.]) mean = np.array([1.1, 2]) cov = np.array([[1., 2], [2, 5]]) p = logpdf(z, mean, cov, allow_singular=False) p2 = log_multivariate_normal_density(z, mean, cov) print('p', p) print('p2', p2) print('p-p2', p - p2)
def _smooth_backstep(self, modal_probs_current, modal_probs__smoothed_next, x_smooth_next, P_smooth_next, x_prior_next, P_prior_next, x_post, P_post, likelihoods): mixing_probs, _ = self._compute_mixing_probabilities_functional( self.M, modal_probs_current) mixing_probs, _ = self._compute_mixing_probabilities_functional( M=mixing_probs, mu=modal_probs__smoothed_next) [xs_smooth_mixed_n, Ps_smooth_mixed_n ] = self._compute_mixed_estimates(x_smooth_next, P_smooth_next, mixing_probs) xs_smooth_mixed_n = x_smooth_next Ps_smooth_mixed_n = P_smooth_next xs_smooth_model = [] Ps_smooth_model = [] for i, f in enumerate(self.filters): [x_temp, P_temp] = f._rts_backstep(x_post[i], P_post[i], xs_smooth_mixed_n[i], Ps_smooth_mixed_n[i], x_prior_next[i], P_prior_next[i]) xs_smooth_model.append(x_temp) Ps_smooth_model.append(P_temp) likelihood_smooth = [] for j, f_j in enumerate(self.filters): cumulation = 0.0 for i, f_i in enumerate(self.filters): #Resizing by multiplying by lots of zeros slows the program down substantially z = np.zeros(self.x.shape) x_i = self.add(x_smooth_next[i], z) x_j = self.add(x_prior_next[i], z) P_j = self.add(P_prior_next[i], np.zeros(self.P.shape)) cumulation = cumulation + self.M[i, j] * logpdf(x_i, x_j, P_j) #likelihood_smooth.append(likelihoods[j]) likelihood_smooth.append(cumulation) mu_smooth = (likelihood_smooth * modal_probs_current) mu_smooth = mu_smooth / mu_smooth.sum() x_smooth_out = np.zeros(self.x.shape) P_smooth_out = np.zeros(self.P.shape) for i, (f, mu) in enumerate(zip(self.filters, mu_smooth)): x_smooth_out = self.add(x_smooth_out, xs_smooth_model[i] * mu) for i, (f, mu) in enumerate(zip(self.filters, mu_smooth)): y = self.add(f.x, -self.x_smooth) P_smooth_out = self.add( P_smooth_out, (self.add(mu * outer(y, y), mu * Ps_smooth_model[i]))) return x_smooth_out, P_smooth_out
def update(self, z, R=None, H=None): if z is None: return if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R # rename for readability and a tiny extra bit of speed if H is None: H = self.H P = self.P x = self.x # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim==1 and shape(z) == (1,1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # y = z - Hx # error (residual) between measurement and prediction Hx = dot(H, x) assert shape(Hx) == shape(z) or (shape(Hx) == (1,1) and shape(z) == (1,)), \ 'shape of z should be {}, but it is {}'.format( shape(Hx), shape(z)) self.y = z - Hx # S = HPH' + R # project system uncertainty into measurement space self.S = dot3(H, P, H.T) + R # K = PH'inv(S) # map system uncertainty into kalman gain self.K = dot3(P, H.T, linalg.inv(self.S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self.x = x + dot(self.K, self.y) # P = (I-KH)P(I-KH)' + KRK' I_KH = self.I - dot(self.K, H) self.P = dot3(I_KH, P, I_KH.T) + dot3(self.K, R, self.K.T) self.log_likelihood = logpdf(z, dot(H, x), self.S)
def update(self, z, R=None): """ Add a new measurement (z) to the kalman filter. If z is None, nothing is changed. Parameters ---------- z : np.array measurement for this update. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. """ if z is None: return if R is None: R = self.R elif np.isscalar(R): R = eye(self.dim_z) * R # y = z - Hx # error (residual) between measurement and prediction self.y = z - dot(self.H, self.x) PHT = dot(self.P, self.H.T) # S = HPH' + R # project system uncertainty into measurement space self.S = dot(self.H, PHT) + R # K = PH'inv(S) # map system uncertainty into kalman gain self.K = PHT.dot(linalg.inv(self.S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self.x = self.x + dot(self.K, self.y) # P = (I-KH)P(I-KH)' + KRK' I_KH = self.I - dot(self.K, self.H) self.P = dot(I_KH, self.P).dot(I_KH.T) + dot(self.K, R).dot(self.K.T) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=self.S)
def smooth(self): """ Performs IMM smoothing one step. This should be performed after the update() is performed. """ x_smooths, P_smooths, likelihood_smooth = [], [], [] mu_smooth = self.mu.copy() for i, f in enumerate(self.filters): # propagate using the mixed state estimate and covariance Smoothing_gain = dot(f.P_post.dot(f.F.T), np.linalg.inv(f.P_prior)) x_smooths.append(f.x_post + Smoothing_gain.dot(self.x_mixed[i] - f.x_prior)) P_smooths.append(f.P_post - Smoothing_gain.dot( self.P_mixed[i] - f.P_prior).dot(Smoothing_gain.T)) for j, f_j in enumerate(self.filters): cumulation = 0.0 for i, f_i in enumerate(self.filters): #Resizing by multiplying by lots of zeros slows the program down substantially z = np.zeros(self.x.shape) x_i = self.add(x_smooths[i], z) x_j = self.add(f_i.x_prior, z) P_j = self.add(f_i.P_prior, np.zeros(self.P.shape)) cumulation = cumulation + self.M[i, j] * logpdf(x_i, x_j, P_j) likelihood_smooth.append(cumulation) likelihood_smooth.clear() for j, f_j in enumerate(self.filters): likelihood_smooth.append(f_j.likelihood) mu_smooth = (likelihood_smooth * mu_smooth) mu_smooth = mu_smooth / mu_smooth.sum() self.x_smooth.fill(0) for i, (f, mu) in enumerate(zip(self.filters, mu_smooth)): self.x_smooth = self.add(self.x_smooth, x_smooths[i] * mu) self.P_smooth.fill(0) for i, (f, mu) in enumerate(zip(self.filters, mu_smooth)): y = self.add(f.x, -self.x_smooth) self.P_smooth = self.add( self.P_smooth, (self.add(mu * outer(y, y), mu * P_smooths[i])))
def update_correlated(self, z, R=None, H=None): if z is None: return if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R # rename for readability and a tiny extra bit of speed if H is None: H = self.H x = self.x P = self.P M = self.M # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim==1 and shape(z) == (1,1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # y = z - Hx # error (residual) between measurement and prediction self.y = z - dot(H, x) # project system uncertainty into measurement space self.S = dot3(H, P, H.T) + dot(H, M) + dot(M.T, H.T) + R # K = PH'inv(S) # map system uncertainty into kalman gain self.K = dot(dot(P, H.T) + M, linalg.inv(self.S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self.x = x + dot(self.K, self.y) self.P = P - dot(self.K, dot(H, P) + M.T) # compute log likelihood self.log_likelihood = logpdf(z, dot(H, x), self.S)
def update(self, z, R=None, UT=None, hx_args=()): if z is None: return if not isinstance(hx_args, tuple): hx_args = (hx_args,) if UT is None: UT = unscented_transform if R is None: R = self.R elif isscalar(R): R = eye(self._dim_z) * R for i in range(self._num_sigmas): self.sigmas_h[i] = self.hx(self.sigmas_f[i], *hx_args) # mean and covariance of prediction passed through unscented transform zp, Pz = UT(self.sigmas_h, self.Wm, self.Wc, R, self.z_mean, self.residual_z) # compute cross variance of the state and the measurements Pxz = zeros((self._dim_x, self._dim_z)) for i in range(self._num_sigmas): dx = self.residual_x(self.sigmas_f[i], self.x) dz = self.residual_z(self.sigmas_h[i], zp) Pxz += self.Wc[i] * outer(dx, dz) self.K = dot(Pxz, inv(Pz)) # Kalman gain self.y = self.residual_z(z, zp) # residual self.x = self.x + dot(self.K, self.y) self.P = self.P - dot3(self.K, Pz, self.K.T) self.log_likelihood = logpdf(self.y, np.zeros(len(self.y)), Pz) # Store transformed state uncertainty but without added sensor noise self.Pz = Pz - R
def find_likelihood(self, z, R=None, H=None): if np.all(np.isnan(z)): x_mean_velocity = np.mean(self.velocity_x[-5:]) y_mean_velocity = np.mean(self.velocity_y[-5:]) z_noise = np.random.normal(loc=0, scale=0, size=2) z = list( self.x[0:2] - [self.velocity_x[-1], self.velocity_y[-1]] + [x_mean_velocity, y_mean_velocity] + z_noise) z = reshape_z(z, self.dim_z, self.x.ndim) if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R if H is None: H = self.H y = z - dot(H, self.x) PHT = dot(self.P, H.T) S = dot(H, PHT) + R _log_likelihood = logpdf(x=y, cov=S) _likelihood = exp(_log_likelihood) if _likelihood == 0: _likelihood = sys.float_info.min return _likelihood
def update(self, z, HJacobian, Hx, R=None, args=(), hx_args=(), residual=np.subtract): """ Performs the update innovation of the extended Kalman filter. Parameters ---------- z : np.array measurement for this step. If `None`, only predict step is perfomed. HJacobian : function function which computes the Jacobian of the H matrix (measurement function). Takes state variable (self.x) as input, returns H. Hx : function function which takes as input the state variable (self.x) along with the optional arguments in hx_args, and returns the measurement that would correspond to that state. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. args : tuple, optional, default (,) arguments to be passed into HJacobian after the required state variable. for robot localization you might need to pass in information about the map and time of day, so you might have `args=(map_data, time)`, where the signature of HCacobian will be `def HJacobian(x, map, t)` hx_args : tuple, optional, default (,) arguments to be passed into Hx function after the required state variable. residual : function (z, z2), optional Optional function that computes the residual (difference) between the two measurement vectors. If you do not provide this, then the built in minus operator will be used. You will normally want to use the built in unless your residual computation is nonlinear (for example, if they are angles) """ if not isinstance(args, tuple): args = (args, ) if not isinstance(hx_args, tuple): hx_args = (hx_args, ) if R is None: R = self.R elif np.isscalar(R): R = eye(self.dim_z) * R if np.isscalar(z) and self.dim_z == 1: z = np.asarray([z], float) H = HJacobian(self.x, *args) PHT = dot(self.P, H.T) self.S = dot(H, PHT) + R self.K = PHT.dot(linalg.inv(self.S)) hx = Hx(self.x, *hx_args) self.y = residual(z, hx) self.x = self.x + dot(self.K, self.y) # P = (I-KH)P(I-KH)' + KRK' is more numerically stable # and works for non-optimal K vs the equation # P = (I-KH)P usually seen in the literature. I_KH = self._I - dot(self.K, H) self.P = dot(I_KH, self.P).dot(I_KH.T) + dot(self.K, R).dot(self.K.T) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=self.S) self.likelihood = math.exp(self.log_likelihood) if self.likelihood == 0: self.likelihood = sys.float_info.min
def predict_update(self, z, HJacobian, Hx, args=(), hx_args=(), u=0): """ Performs the predict/update innovation of the extended Kalman filter. Parameters ---------- z : np.array measurement for this step. If `None`, only predict step is perfomed. HJacobian : function function which computes the Jacobian of the H matrix (measurement function). Takes state variable (self.x) as input, along with the optional arguments in args, and returns H. Hx : function function which takes as input the state variable (self.x) along with the optional arguments in hx_args, and returns the measurement that would correspond to that state. args : tuple, optional, default (,) arguments to be passed into HJacobian after the required state variable. hx_args : tuple, optional, default (,) arguments to be passed into Hx after the required state variable. u : np.array or scalar optional control vector input to the filter. """ #pylint: disable=too-many-locals if not isinstance(args, tuple): args = (args, ) if not isinstance(hx_args, tuple): hx_args = (hx_args, ) if np.isscalar(z) and self.dim_z == 1: z = np.asarray([z], float) F = self.F B = self.B P = self.P Q = self.Q R = self.R x = self.x H = HJacobian(x, *args) # predict step x = dot(F, x) + dot(B, u) P = dot(F, P).dot(F.T) + Q # save prior self.x_prior = np.copy(self.x) self.P_prior = np.copy(self.P) # update step PHT = dot(P, H.T) self.S = dot(H, PHT) + R self.K = dot(PHT, linalg.inv(self.S)) self.y = z - Hx(x, *hx_args) self.x = x + dot(self.K, self.y) I_KH = self._I - dot(self.K, H) self.P = dot(I_KH, P).dot(I_KH.T) + dot(self.K, R).dot(self.K.T) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=self.S) self.likelihood = math.exp(self.log_likelihood) if self.likelihood == 0: self.likelihood = sys.float_info.min
def update(x, P, z, R, H=None, return_all=False): """ Add a new measurement (z) to the Kalman filter. If z is None, nothing is changed. This can handle either the multidimensional or unidimensional case. If all parameters are floats instead of arrays the filter will still work, and return floats for x, P as the result. update(1, 2, 1, 1, 1) # univariate update(x, P, 1 Parameters ---------- x : numpy.array(dim_x, 1), or float State estimate vector P : numpy.array(dim_x, dim_x), or float Covariance matrix z : numpy.array(dim_z, 1), or float measurement for this update. R : numpy.array(dim_z, dim_z), or float Measurement noise matrix H : numpy.array(dim_x, dim_x), or float, optional Measurement function. If not provided, a value of 1 is assumed. return_all : bool, default False If true, y, K, S, and log_likelihood are returned, otherwise only x and P are returned. Returns ------- x : numpy.array Posterior state estimate vector P : numpy.array Posterior covariance matrix y : numpy.array or scalar Residua. Difference between measurement and state in measurement space K : numpy.array Kalman gain S : numpy.array System uncertainty in measurement space log_likelihood : float log likelihood of the measurement """ if z is None: if return_all: return x, P, None, None, None, None else: return x, P if H is None: H = np.array([1]) if np.isscalar(H): H = np.array([H]) if not np.isscalar(x): # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim == 1 and shape(z) == (1, 1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # error (residual) between measurement and prediction y = z - dot(H, x) # project system uncertainty into measurement space S = dot3(H, P, H.T) + R # map system uncertainty into kalman gain try: K = dot3(P, H.T, linalg.inv(S)) except: K = dot3(P, H.T, 1 / S) # predict new x with residual scaled by the kalman gain x = x + dot(K, y) # P = (I-KH)P(I-KH)' + KRK' KH = dot(K, H) try: I_KH = np.eye(KH.shape[0]) - KH except: I_KH = np.array(1 - KH) P = dot3(I_KH, P, I_KH.T) + dot3(K, R, K.T) if return_all: # compute log likelihood log_likelihood = logpdf(z, dot(H, x), S) return x, P, y, K, S, log_likelihood else: return x, P
def update_correlated(self, z, R=None, H=None): """ Add a new measurement (z) to the Kalman filter assuming that process noise and measurement noise are correlated as defined in the `self.M` matrix. If z is None, nothing is changed. Parameters ---------- z : np.array measurement for this update. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. H : np.array, or None Optionally provide H to override the measurement function for this one call, otherwise self.H will be used. """ if z is None: return if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R # rename for readability and a tiny extra bit of speed if H is None: H = self.H x = self._x P = self._P M = self.M # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim == 1 and shape(z) == (1, 1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # y = z - Hx # error (residual) between measurement and prediction self._y = z - dot(H, x) # project system uncertainty into measurement space S = dot3(H, P, H.T) + dot(H, M) + dot(M.T, H.T) + R # K = PH'inv(S) # map system uncertainty into kalman gain K = dot(dot(P, H.T) + M, linalg.inv(S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self._x = x + dot(K, self._y) self._P = P - dot(K, dot(H, P) + M.T) self._S = S self._K = K # compute log likelihood self.log_likelihood = logpdf(z, dot(H, x), S)
def update(self, z, R=None, H=None): """ Add a new measurement (z) to the Kalman filter. If z is None, nothing is changed. Parameters ---------- z : np.array measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be a column vector. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. H : np.array, or None Optionally provide H to override the measurement function for this one call, otherwise self.H will be used. """ if z is None: return if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R # rename for readability and a tiny extra bit of speed if H is None: H = self.H P = self._P x = self._x # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim == 1 and shape(z) == (1, 1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # y = z - Hx # error (residual) between measurement and prediction Hx = dot(H, x) assert shape(Hx) == shape(z) or (shape(Hx) == (1,1) and shape(z) == (1,)), \ 'shape of z should be {}, but it is {}'.format( shape(Hx), shape(z)) self._y = z - Hx # S = HPH' + R # project system uncertainty into measurement space S = dot3(H, P, H.T) + R # K = PH'inv(S) # map system uncertainty into kalman gain K = dot3(P, H.T, linalg.inv(S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self._x = x + dot(K, self._y) # P = (I-KH)P(I-KH)' + KRK' I_KH = self._I - dot(K, H) self._P = dot3(I_KH, P, I_KH.T) + dot3(K, R, K.T) self._S = S self._K = K self.log_likelihood = logpdf(z, dot(H, x), S)
def log_likelihood(self): if self._log_likelihood is None: self._log_likelihood = logpdf(x=self.y, cov=self.S) return self._log_likelihood
def update(self, z, R=None, UT=None, hx=None, **hx_args): """ Update the UKF with the given measurements. On return, self.x and self.P contain the new mean and covariance of the filter. Parameters ---------- z : numpy.array of shape (dim_z) measurement vector R : numpy.array((dim_z, dim_z)), optional Measurement noise. If provided, overrides self.R for this function call. UT : function(sigmas, Wm, Wc, noise_cov), optional Optional function to compute the unscented transform for the sigma points passed through hx. Typically the default function will work - you can use x_mean_fn and z_mean_fn to alter the behavior of the unscented transform. **hx_args : keyword argument arguments to be passed into h(x) after x -> h(x, **hx_args) """ if z is None: return if hx is None: hx = self.hx if UT is None: UT = unscented_transform if R is None: R = self.R elif isscalar(R): R = eye(self._dim_z) * R # pass prior sigmas through h(x) to get measurement sigmas # the shape of sigmas_h will vary if the shape of z varies, so # recreate each time sigmas_h = [] for s in self.sigmas_f: sigmas_h.append(hx(s, **hx_args)) self.sigmas_h = np.atleast_2d(sigmas_h) # mean and covariance of prediction passed through unscented transform zp, Pz = UT(self.sigmas_h, self.Wm, self.Wc, R, self.z_mean, self.residual_z) # compute cross variance of the state and the measurements Pxz = self.cross_variance(self.x, zp, self.sigmas_f, self.sigmas_h) self.K = dot(Pxz, self.inv(Pz)) # Kalman gain self.y = self.residual_z(z, zp) # residual # update Gaussian state estimate (x, P) self.x = self.x + dot(self.K, self.y) self.P = self.P - dot(self.K, dot(Pz, self.K.T)) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=Pz) self.likelihood = math.exp(self.log_likelihood) if self.likelihood == 0: self.likelihood = sys.float_info.min
def dist(self, observation): # negative log likelihood (so that smaller is better) kf = self._kf residual = observation.centroid - self.mean() S = np.dot(kf.H, np.dot(kf.P, kf.H.T)) + observation.covariance return -logpdf(x=residual, cov=S)
def update(x, P, z, R, H=None, return_all=False): """ Add a new measurement (z) to the Kalman filter. If z is None, nothing is changed. This can handle either the multidimensional or unidimensional case. If all parameters are floats instead of arrays the filter will still work, and return floats for x, P as the result. update(1, 2, 1, 1, 1) # univariate update(x, P, 1 Parameters ---------- x : numpy.array(dim_x, 1), or float State estimate vector P : numpy.array(dim_x, dim_x), or float Covariance matrix z : (dim_z, 1): array_like measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be convertible to a column vector. R : numpy.array(dim_z, dim_z), or float Measurement noise matrix H : numpy.array(dim_x, dim_x), or float, optional Measurement function. If not provided, a value of 1 is assumed. return_all : bool, default False If true, y, K, S, and log_likelihood are returned, otherwise only x and P are returned. Returns ------- x : numpy.array Posterior state estimate vector P : numpy.array Posterior covariance matrix y : numpy.array or scalar Residua. Difference between measurement and state in measurement space K : numpy.array Kalman gain S : numpy.array System uncertainty in measurement space log_likelihood : float log likelihood of the measurement """ if z is None: if return_all: return x, P, None, None, None, None else: return x, P if H is None: H = np.array([1]) if np.isscalar(H): H = np.array([H]) Hx = np.atleast_1d(dot(H, x)) z = _reshape_z(z, Hx.shape[0], x.ndim) # error (residual) between measurement and prediction y = z - Hx # project system uncertainty into measurement space S = dot(dot(H, P), H.T) + R # map system uncertainty into kalman gain try: K = dot(dot(P, H.T), linalg.inv(S)) except: K = dot(dot(P, H.T), 1./S) # predict new x with residual scaled by the kalman gain x = x + dot(K, y) # P = (I-KH)P(I-KH)' + KRK' KH = dot(K, H) try: I_KH = np.eye(KH.shape[0]) - KH except: I_KH = np.array([1 - KH]) P = dot(dot(I_KH, P), I_KH.T) + dot(dot(K, R), K.T) if return_all: # compute log likelihood log_likelihood = logpdf(z, dot(H, x), S) return x, P, y, K, S, log_likelihood else: return x, P
def update(x, P, z, R, H=None, return_all=False): """ Add a new measurement (z) to the Kalman filter. If z is None, nothing is changed. This can handle either the multidimensional or unidimensional case. If all parameters are floats instead of arrays the filter will still work, and return floats for x, P as the result. update(1, 2, 1, 1, 1) # univariate update(x, P, 1 Parameters ---------- x : numpy.array(dim_x, 1), or float State estimate vector P : numpy.array(dim_x, dim_x), or float Covariance matrix z : numpy.array(dim_z, 1), or float measurement for this update. R : numpy.array(dim_z, dim_z), or float Measurement noise matrix H : numpy.array(dim_x, dim_x), or float, optional Measurement function. If not provided, a value of 1 is assumed. return_all : bool, default False If true, y, K, S, and log_likelihood are returned, otherwise only x and P are returned. Returns ------- x : numpy.array Posterior state estimate vector P : numpy.array Posterior covariance matrix y : numpy.array or scalar Residua. Difference between measurement and state in measurement space K : numpy.array Kalman gain S : numpy.array System uncertainty in measurement space log_likelihood : float log likelihood of the measurement """ if z is None: if return_all: return x, P, None, None, None, None else: return x, P if H is None: H = np.array([1]) if np.isscalar(H): H = np.array([H]) if not np.isscalar(x): # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim==1 and shape(z) == (1,1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # error (residual) between measurement and prediction y = z - dot(H, x) # project system uncertainty into measurement space S = dot3(H, P, H.T) + R # map system uncertainty into kalman gain try: K = dot3(P, H.T, linalg.inv(S)) except: K = dot3(P, H.T, 1/S) # predict new x with residual scaled by the kalman gain x = x + dot(K, y) # P = (I-KH)P(I-KH)' + KRK' KH = dot(K, H) try: I_KH = np.eye(KH.shape[0]) - KH except: I_KH = np.array(1 - KH) P = dot3(I_KH, P, I_KH.T) + dot3(K, R, K.T) if return_all: # compute log likelihood log_likelihood = logpdf(z, dot(H, x), S) return x, P, y, K, S, log_likelihood else: return x, P
def update_correlated(self, z, R=None, H=None): """ Add a new measurement (z) to the Kalman filter assuming that process noise and measurement noise are correlated as defined in the `self.M` matrix. If z is None, nothing is changed. Parameters ---------- z : np.array measurement for this update. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. H : np.array, or None Optionally provide H to override the measurement function for this one call, otherwise self.H will be used. """ if z is None: return if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R # rename for readability and a tiny extra bit of speed if H is None: H = self.H x = self._x P = self._P M = self.M # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim==1 and shape(z) == (1,1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # y = z - Hx # error (residual) between measurement and prediction self._y = z - dot(H, x) # project system uncertainty into measurement space S = dot3(H, P, H.T) + dot(H, M) + dot(M.T, H.T) + R # K = PH'inv(S) # map system uncertainty into kalman gain K = dot(dot(P, H.T) + M, linalg.inv(S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self._x = x + dot(K, self._y) self._P = P - dot(K, dot(H, P) + M.T) self._S = S self._K = K # compute log likelihood self.log_likelihood = logpdf(z, dot(H, x), S)
def update(self, z, R=None, H=None): """ Add a new measurement (z) to the Kalman filter. If z is None, nothing is changed. Parameters ---------- z : np.array measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be a column vector. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. H : np.array, or None Optionally provide H to override the measurement function for this one call, otherwise self.H will be used. """ if z is None: return if R is None: R = self.R elif isscalar(R): R = eye(self.dim_z) * R # rename for readability and a tiny extra bit of speed if H is None: H = self.H P = self._P x = self._x # handle special case: if z is in form [[z]] but x is not a column # vector dimensions will not match if x.ndim==1 and shape(z) == (1,1): z = z[0] if shape(z) == (): # is it scalar, e.g. z=3 or z=np.array(3) z = np.asarray([z]) # y = z - Hx # error (residual) between measurement and prediction Hx = dot(H, x) assert shape(Hx) == shape(z) or (shape(Hx) == (1,1) and shape(z) == (1,)), \ 'shape of z should be {}, but it is {}'.format( shape(Hx), shape(z)) self._y = z - Hx # S = HPH' + R # project system uncertainty into measurement space S = dot3(H, P, H.T) + R # K = PH'inv(S) # map system uncertainty into kalman gain K = dot3(P, H.T, linalg.inv(S)) # x = x + Ky # predict new x with residual scaled by the kalman gain self._x = x + dot(K, self._y) # P = (I-KH)P(I-KH)' + KRK' I_KH = self._I - dot(K, H) self._P = dot3(I_KH, P, I_KH.T) + dot3(K, R, K.T) self._S = S self._K = K self.log_likelihood = logpdf(z, dot(H, x), S)
def update(self, z, R=None, UT=None, hx_args=()): """ Update the UKF with the given measurements. On return, self.x and self.P contain the new mean and covariance of the filter. Parameters ---------- z : numpy.array of shape (dim_z) measurement vector R : numpy.array((dim_z, dim_z)), optional Measurement noise. If provided, overrides self.R for this function call. UT : function(sigmas, Wm, Wc, noise_cov), optional Optional function to compute the unscented transform for the sigma points passed through hx. Typically the default function will work - you can use x_mean_fn and z_mean_fn to alter the behavior of the unscented transform. hx_args : tuple, optional, default (,) arguments to be passed into Hx function after the required state variable. """ if z is None: return if not isinstance(hx_args, tuple): hx_args = (hx_args, ) if UT is None: UT = unscented_transform if R is None: R = self.R elif isscalar(R): R = eye(self._dim_z) * R for i, s in enumerate(self.sigmas_f): self.sigmas_h[i] = self.hx(s, *hx_args) # mean and covariance of prediction passed through unscented transform zp, Pz = UT(self.sigmas_h, self.Wm, self.Wc, R, self.z_mean, self.residual_z) # compute cross variance of the state and the measurements Pxz = self.cross_variance(self.x, zp, self.sigmas_f, self.sigmas_h) self.K = dot(Pxz, self.inv(Pz)) # Kalman gain self.y = self.residual_z(z, zp) # residual # update Gaussian state estimate (x, P) self.x = self.x + dot(self.K, self.y) self.P = self.P - dot(self.K, dot(Pz, self.K.T)) if self.compute_log_likelihood: self.log_likelihood = logpdf(x=self.y, cov=Pz) self.likelihood = math.exp(self.log_likelihood) if self.likelihood == 0: self.likelihood = sys.float_info.min