Exemplo n.º 1
0
def LMMFlexiCapPricer(maxCaplets, K, numPeriods, numPaths, fwd0, fwds, taus):
    ''' Price a flexicap using the simulated Libor rates.'''

    maxPaths = len(fwds)
    maxForwards = len(fwds[0][0])

    if numPeriods > maxForwards:
        raise FinError("NumPeriods > numForwards")

    if numPaths > maxPaths:
        raise FinError("NumPaths > MaxPaths")

    discFactor = np.zeros(maxForwards)
    numeraire = np.zeros(maxForwards)
    flexiCaplets = np.zeros(maxForwards)
    flexiCapletValues = np.zeros(maxForwards)

    # Set up initial term structure
    discFactor[0] = 1.0 / (1.0 + fwd0[0] * taus[0])
    for ix in range(1, maxForwards):
        discFactor[ix] = discFactor[ix - 1] / (1.0 + fwd0[ix] * taus[ix])

    for iPath in range(0, numPaths):

        periodRoll = 1.0
        libor = fwds[iPath, 0, 0]
        flexiCaplets[0] = 0.0

        numCapletsLeft = maxCaplets

        for j in range(1, numPeriods):  # TIME LOOP

            libor = fwds[iPath, j, j]

            if j == 1:
                if libor > K and numCapletsLeft > 0:
                    flexiCaplets[j] = max(libor - K, 0.0) * taus[j]
                    numCapletsLeft -= 1
                numeraire[0] = 1.0 / discFactor[0]
            else:
                if libor > K and numCapletsLeft > 0:
                    flexiCaplets[j] = max(libor - K, 0.0) * taus[j]
                    numCapletsLeft -= 1

            periodRoll = (1.0 + libor * taus[j])
            numeraire[j] = numeraire[j - 1] * periodRoll

        for iFwd in range(0, numPeriods):
            flexiCapletValues[iFwd] += flexiCaplets[iFwd] / numeraire[iFwd]

    for iFwd in range(0, numPeriods):
        flexiCapletValues[iFwd] /= numPaths

    flexiCapValue = 0.0
    for iFwd in range(0, numPeriods):
        flexiCapValue += flexiCapletValues[iFwd]

    return flexiCapValue
Exemplo n.º 2
0
def LMMSwaptionPricer(strike, a, b, numPaths, fwd0, fwds, taus, isPayer):
    ''' Function to price a European swaption using the simulated forward
    curves. '''

    maxPaths = len(fwds)
    maxForwards = len(fwds[0])

    if a > maxForwards:
        raise FinError("NumPeriods > numForwards")

    if a >= b:
        raise FinError("Swap maturity is before expiry date")

    if numPaths > maxPaths:
        raise FinError("NumPaths > MaxPaths")

    discFactor = np.zeros(maxForwards)
    #    pv01 = np.zeros(maxForwards)

    # Set up initial term structure
    discFactor[0] = 1.0 / (1.0 + fwd0[0] * taus[0])
    for ix in range(1, b):
        discFactor[ix] = discFactor[ix - 1] / (1.0 + fwd0[ix] * taus[ix])

    sumPayRecSwaption = 0.0

    for iPath in range(0, numPaths):

        numeraire = 1.0
        for k in range(0, a):
            numeraire *= (1.0 + taus[k] * fwds[iPath, k, k])

        pv01 = 0.0
        df = 1.0

        # Value the swap as if we were at time a with forward curve known
        for k in range(a, b):
            f = fwds[iPath, a, k]
            tau = taus[k]
            df = df / (1.0 + tau * f)
            pv01 = pv01 + tau * df

        fwdSwapRate = (1.0 - df) / pv01

        if isPayer == 1:
            payRecSwaption = max(fwdSwapRate - strike, 0.0) * pv01
        elif isPayer == 0:
            payRecSwaption = max(strike - fwdSwapRate, 0.0) * pv01
        else:
            raise FinError("Unknown payRecSwaption value - must be 0 or 1")

        sumPayRecSwaption += payRecSwaption / (abs(numeraire) + 1e-10)

    payRecPrice = sumPayRecSwaption / numPaths
    return payRecPrice
Exemplo n.º 3
0
def LMMCapFlrPricer(numForwards, numPaths, K, fwd0, fwds, taus, isCap):
    ''' Function to price a strip of cap or floorlets in accordance with the
    simulated forward curve dynamics. '''

    maxPaths = len(fwds)
    maxForwards = len(fwds[0])

    if numForwards > maxForwards:
        raise FinError("NumForwards > maxForwards")

    if numPaths > maxPaths:
        raise FinError("NumPaths > MaxPaths")

    discFactor = np.zeros(numForwards)
    capFlrLets = np.zeros(numForwards - 1)
    capFlrLetValues = np.zeros(numForwards - 1)
    numeraire = np.zeros(numForwards)

    for iPath in range(0, numPaths):

        periodRoll = 1.0
        libor = fwds[iPath, 0, 0]
        capFlrLets[0] = max(K - libor, 0) * taus[0]

        # Now loop over the caplets starting with one that fixes immediately
        # but which may have intrinsic value that cannot be ignored.
        for j in range(0, numForwards):

            libor = fwds[iPath, j, j]
            if j == 1:
                if isCap == 0:
                    capFlrLets[j] = max(K - libor, 0) * taus[j]
                else:
                    capFlrLets[j] = max(libor - K, 0) * taus[j]

                numeraire[0] = 1.0 / discFactor[0]
            else:
                if isCap == 1:
                    capFlrLets[j] = max(libor - K, 0) * taus[j]
                elif isCap == 0:
                    capFlrLets[j] = max(K - libor, 0) * taus[j]
                else:
                    raise FinError("isCap should be 0 or 1")

            periodRoll = (1.0 + libor * taus[j])
            numeraire[j] = numeraire[j - 1] * periodRoll

        for iFwd in range(0, numForwards):
            denom = abs(numeraire[iFwd]) + 1e-12
            capFlrLetValues[iFwd] += capFlrLets[iFwd] / denom

    for iFwd in range(0, numForwards):
        capFlrLetValues[iFwd] /= numPaths

    return capFlrLetValues
Exemplo n.º 4
0
def LMMStickyCapletPricer(spread, numPeriods, numPaths, fwd0, fwds, taus):
    ''' Price a sticky cap using the simulated Libor rates. '''

    maxPaths = len(fwds)
    maxForwards = len(fwds[0][0])

    if numPeriods > maxForwards:
        raise FinError("NumPeriods > numForwards")

    if numPaths > maxPaths:
        raise FinError("NumPaths > MaxPaths")

    discFactor = np.zeros(maxForwards)
    numeraire = np.zeros(maxForwards)
    stickyCaplets = np.zeros(maxForwards)
    stickyCapletValues = np.zeros(maxForwards)

    # Set up initial term structure
    discFactor[0] = 1.0 / (1.0 + fwd0[0] * taus[0])
    for ix in range(1, maxForwards):
        discFactor[ix] = discFactor[ix - 1] / (1.0 + fwd0[ix] * taus[ix])

    for iPath in range(0, numPaths):

        periodRoll = 1.0
        libor = fwds[iPath, 0, 0]
        stickyCaplets[0] = 0.0
        K = libor

        for j in range(1, numPeriods):  # TIME LOOP

            prevLibor = libor
            K = min(prevLibor, K) + spread
            libor = fwds[iPath, j, j]

            if j == 1:
                stickyCaplets[j] = max(libor - K, 0.0) * taus[j]
                numeraire[0] = 1.0 / discFactor[0]
            else:
                stickyCaplets[j] = max(libor - K, 0.0) * taus[j]

            periodRoll = (1.0 + libor * taus[j])
            numeraire[j] = numeraire[j - 1] * periodRoll

        for iFwd in range(0, numPeriods):
            stickyCapletValues[iFwd] += stickyCaplets[iFwd] / numeraire[iFwd]

    for iFwd in range(0, numPeriods):
        stickyCapletValues[iFwd] /= numPaths

    return stickyCapletValues
Exemplo n.º 5
0
def LMMPriceCapsBlack(fwd0, volCaplet, p, K, taus):
    ''' Price a strip of capfloorlets using Black's model using the time grid
    of the LMM model. The prices can be compared with the LMM model prices. '''

    caplet = np.zeros(p + 1)
    discFwd = np.zeros(p + 1)

    if K <= 0.0:
        raise FinError("Negative strike not allowed.")

    # Set up initial term structure
    discFwd[0] = 1.0 / (1.0 + fwd0[0] * taus[0])
    for i in range(1, p):
        discFwd[i] = discFwd[i - 1] / (1.0 + fwd0[i] * taus[i])

    # Price ATM caplets
    texp = 0.0

    for i in range(1, p):  # 1 to p-1

        K = fwd0[i]
        texp += taus[i]
        vol = volCaplet[i]
        F = fwd0[i]
        d1 = (np.log(F / K) + vol * vol * texp / 2.0) / vol / np.sqrt(texp)
        d2 = d1 - vol * np.sqrt(texp)
        caplet[i] = (F * N(d1) - K * N(d2)) * taus[i] * discFwd[i]

    return caplet
Exemplo n.º 6
0
def LMMSimSwaptionVol(a, b, fwd0, fwds, taus):
    ''' Calculates the swap rate volatility using the forwards generated in the
    simulation to see how it compares to Rebonatto estimate. '''

    numPaths = len(fwds)
    numForwards = len(fwds[0])

    if a > numForwards:
        raise FinError("NumPeriods > numForwards")

    if a >= b:
        raise FinError("Swap maturity is before expiry date")

    fwdSwapRateMean = 0.0
    fwdSwapRateVar = 0.0

    for iPath in prange(0, numPaths):

        numeraire = 1.0

        for k in range(0, a):
            numeraire *= (1.0 + taus[k] * fwds[iPath, k, k])

        pv01 = 0.0
        df = 1.0

        for k in range(a, b):
            f = fwds[iPath, a, k]
            tau = taus[k]
            df = df / (1.0 + tau * f)
            pv01 = pv01 + tau * df

        fwdSwapRate = (1.0 - df) / pv01

        fwdSwapRateMean += fwdSwapRate
        fwdSwapRateVar += fwdSwapRate**2

    taua = 0.0
    for i in range(0, a):
        taua += taus[i]

    fwdSwapRateMean /= numPaths
    fwdSwapRateVar = fwdSwapRateVar / numPaths - fwdSwapRateMean**2
    fwdSwapRateVol = np.sqrt(fwdSwapRateVar / taua)
    fwdSwapRateVol /= fwdSwapRateMean
    return fwdSwapRateVol
Exemplo n.º 7
0
    def print(self, *args):
        ''' Print comma separated output to GOLDEN or COMPARE directory. '''

        if self._mode == FinTestCaseMode.DEBUG_TEST_CASES:
            print(args)
            return

        if not self._foldersExist:
            print("Cannot print as GOLDEN and COMPARE folders don't exist")
            return

        if self._headerFields is None:
            print("ERROR: Need to set header fields before printing results")
        elif len(self._headerFields) != len(args):
            n1 = len(self._headerFields)
            n2 = len(args)
            raise FinError("ERROR: Number of data columns is " + str(n1) +
                           " but must equal " + str(n2) +
                           " to align with headers.")

        if self._mode == FinTestCaseMode.SAVE_TEST_CASES:
            filename = self._goldenFilename
        else:
            filename = self._compareFilename

        f = open(filename, 'a')
        f.write("RESULTS,")

        for arg in args:
            if isinstance(arg, float):
                f.write("%10.8f" % (arg))
            else:
                f.write(str(arg))
            f.write(",")

        f.write("\n")
        f.close()
Exemplo n.º 8
0
    def __init__(self, moduleName, mode):
        ''' Create the TestCase given the module name and whether we are in
        GOLDEN or COMPARE mode. '''

        rootFolder, moduleFilename = split(moduleName)

        self._carefulMode = False
        self._verbose = False

        if mode in FinTestCaseMode:
            self._mode = mode
        else:
            raise FinError("Unknown TestCase Mode")

        if mode == FinTestCaseMode.DEBUG_TEST_CASES:
            # Don't do anything
            self._verbose = True
            return

        self._moduleName = moduleFilename[0:-3]
        self._foldersExist = True
        self._rootFolder = rootFolder
        self._headerFields = None

        #        print("Root folder:",self._rootFolder)
        #        print("Modulename:",self._moduleName)

        self._goldenFolder = join(rootFolder, "golden")
        self._differencesFolder = join(rootFolder, "differences")

        if exists(self._goldenFolder) is False:
            print("Looking for:", self._goldenFolder)
            print("GOLDEN Folder DOES NOT EXIST. You must create it. Exiting")
            self._foldersExist = False
            return None

        self._compareFolder = join(rootFolder, "compare")

        if exists(self._compareFolder) is False:
            print("Looking for:", self._compareFolder)
            print("COMPARE Folder DOES NOT EXIST. You must create it. Exiting")
            self._foldersExist = False
            return None

        self._goldenFilename = join(self._goldenFolder,
                                    self._moduleName + "_GOLDEN.log")

        self._compareFilename = join(self._compareFolder,
                                     self._moduleName + "_COMPARE.log")

        self._differencesFilename = join(self._differencesFolder,
                                         self._moduleName + "_DIFFS.log")

        if self._mode == FinTestCaseMode.SAVE_TEST_CASES:

            print("GOLDEN Test Case Creation for module:", moduleFilename)

            if exists(self._goldenFilename) and self._carefulMode:
                overwrite = input("File " + self._goldenFilename +
                                  " exists. Overwrite (Y/N) ?")
                if overwrite == "N":
                    print("Not overwriting. Saving test cases failed.")
                    return
                elif overwrite == "Y":
                    print("Overwriting existing file...")

            creationTime = time.strftime("%Y%m%d_%H%M%S")
            f = open(self._goldenFilename, 'w')
            f.write("File Created on:" + creationTime)
            f.write("\n")
            f.close()

        else:

            print("GENERATING NEW OUTPUT FOR MODULE", moduleFilename,
                  "FOR COMPARISON.")

            if exists(self._compareFilename) and self._carefulMode:
                overwrite = input("File " + self._compareFilename +
                                  " exists. Overwrite (Y/N) ?")
                if overwrite == "N":
                    print("Not overwriting. Saving test cases failed.")
                    return
                elif overwrite == "Y":
                    print("Overwriting existing file...")

#            print("Creating empty file",self._compareFilename)
            creationTime = time.strftime("%Y%m%d_%H%M%S")
            f = open(self._compareFilename, 'w')
            f.write("File Created on:" + creationTime)
            f.write("\n")
            f.close()
Exemplo n.º 9
0
def LMMSwapPricer(cpn, numPeriods, numPaths, fwd0, fwds, taus):
    ''' Function to reprice a basic swap using the simulated forward Libors.
    '''

    maxPaths = len(fwds)
    maxForwards = len(fwds[0])

    if numPeriods > maxForwards:
        raise FinError("NumPeriods > numForwards")

    if numPaths > maxPaths:
        raise FinError("NumPaths > MaxPaths")

    discFactor = np.zeros(maxForwards)
    numeraire = np.zeros(maxForwards)
    sumFixed = 0.0
    sumFloat = 0.0
    fixedFlows = np.zeros(maxForwards)
    floatFlows = np.zeros(maxForwards)

    # Set up initial term structure
    discFactor[0] = 1.0 / (1.0 + fwd0[0] * taus[0])
    for ix in range(1, maxForwards):
        discFactor[ix] = discFactor[ix - 1] / (1.0 + fwd0[ix] * taus[ix])

    for iPath in range(0, numPaths):

        periodRoll = 1.0
        libor = fwds[iPath, 0, 0]
        floatFlows[0] = libor * taus[0]
        fixedFlows[0] = cpn * taus[0]
        numeraire[0] = 1.0 / discFactor[0]

        for j in range(1, numPeriods):  # TIME LOOP

            libor = fwds[iPath, j, j]

            if j == 1:
                fixedFlows[j] = cpn * taus[j]
                floatFlows[j] = libor * taus[j]
            else:
                fixedFlows[j] = fixedFlows[j - 1] * periodRoll + cpn * taus[j]
                floatFlows[j] = floatFlows[j -
                                           1] * periodRoll + libor * taus[j]

            periodRoll = (1.0 + libor * taus[j])
            numeraire[j] = numeraire[j - 1] * periodRoll

        for iFwd in range(0, numPeriods):
            sumFloat += floatFlows[iFwd] / numeraire[iFwd]
            sumFixed += fixedFlows[iFwd] / numeraire[iFwd]

    sumFloat /= numPaths
    sumFixed /= numPaths
    v = sumFixed - sumFloat
    pv01 = sumFixed / cpn
    swapRate = sumFloat / pv01

    print("FLOAT LEG:", sumFloat)
    print("FIXED LEG:", sumFixed)
    print("SWAP RATE:", swapRate)
    print("NET VALUE:", v)
    return v
Exemplo n.º 10
0
def LMMSwaptionVolApprox(a, b, fwd0, taus, zetas, rho):
    ''' Implements Rebonato's approximation for the swap rate volatility to be
    used when pricing a swaption that expires in period a for a swap maturing
    at the end of period b taking into account the forward volatility term
    structure (zetas) and the forward-forward correlation matrix rho.. '''

    numPeriods = len(fwd0)

    #    if len(taus) != numPeriods:
    #        raise FinError("Tau vector must have length" + str(numPeriods))

    #    if len(zetas) != numPeriods:
    #        raise FinError("Tau vector must have length" + str(numPeriods))

    #    if len(rho) != numPeriods:
    #        raise FinError("Rho matrix must have length" + str(numPeriods))

    #    if len(rho[0]) != numPeriods:
    #        raise FinError("Rho matrix must have height" + str(numPeriods))

    if b > numPeriods:
        raise FinError("Swap maturity beyond numPeriods.")

    if a == b:
        raise FinError("Swap maturity on swap expiry date")

    p = np.zeros(numPeriods)
    p[0] = 1.0 / (1.0 + fwd0[0] * taus[0])
    for ix in range(1, numPeriods):
        p[ix] = p[ix - 1] / (1.0 + fwd0[ix] * taus[ix])

    wts = np.zeros(numPeriods)
    pv01ab = 0.0
    for k in range(a + 1, b):
        pv01ab += taus[k] * p[k]

    sab = (p[a] - p[b - 1]) / pv01ab

    for i in range(a, b):
        wts[i] = taus[i] * p[i] / pv01ab

    swaptionVar = 0.0
    for i in range(a, b):
        for j in range(a, b):
            wti = wts[i]
            wtj = wts[j]
            fi = fwd0[i]
            fj = fwd0[j]
            intsigmaij = 0.0

            for k in range(0, a):
                intsigmaij += zetas[i] * zetas[j] * taus[k]

            term = wti * wtj * fi * fj * rho[i][j] * intsigmaij / (sab**2)
            swaptionVar += term

    taua = 0.0
    for i in range(0, a):
        taua += taus[i]

    taub = 0.0
    for i in range(0, b):
        taub += taus[i]

    swaptionVol = np.sqrt(swaptionVar / taua)
    return swaptionVol
Exemplo n.º 11
0
def LMMSimulateFwdsMF(numForwards, numFactors, numPaths, numeraireIndex, fwd0,
                      lambdas, taus, useSobol, seed):
    ''' Multi-Factor Arbitrage-free simulation of forward Libor curves in the
    spot measure following Hull Page 768. Given an initial forward curve,
    volatility factor term structure. The 3D matrix of forward rates by path,
    time and forward point is returned. '''

    np.random.seed(seed)

    if len(lambdas) != numFactors:
        raise FinError("Lambda does not have the right number of factors")

    if len(lambdas[0]) != numForwards:
        raise FinError("Lambda does not have the right number of forwards")

    # Even number of paths for antithetics
    numPaths = 2 * int(numPaths / 2)
    halfNumPaths = int(numPaths / 2)
    fwd = np.empty((numPaths, numForwards, numForwards))
    fwdB = np.zeros(numForwards)

    numTimes = numForwards

    if useSobol == 1:
        numDimensions = numTimes * numFactors
        rands = getUniformSobol(halfNumPaths, numDimensions)
        gMatrix = np.empty((numPaths, numTimes, numFactors))
        for iPath in range(0, halfNumPaths):
            for j in range(0, numTimes):
                for q in range(0, numFactors):
                    col = j * numFactors + q
                    u = rands[iPath, col]
                    g = norminvcdf(u)
                    gMatrix[iPath, j, q] = g
                    gMatrix[iPath + halfNumPaths, j, q] = -g
    elif useSobol == 0:
        gMatrix = np.empty((numPaths, numTimes, numFactors))
        for iPath in range(0, halfNumPaths):
            for j in range(0, numTimes):
                for q in range(0, numFactors):
                    g = np.random.normal()
                    gMatrix[iPath, j, q] = g
                    gMatrix[iPath + halfNumPaths, j, q] = -g
    else:
        raise FinError("Use Sobol must be 0 or 1.")

    for iPath in range(0, numPaths):
        # Initial value of forward curve at time 0
        for iFwd in range(0, numForwards):
            fwd[iPath, 0, iFwd] = fwd0[iFwd]

        for j in range(0, numForwards - 1):  # TIME LOOP
            dtj = taus[j]
            sqrtdtj = np.sqrt(dtj)

            for k in range(j, numForwards):  # FORWARDS LOOP

                muA = 0.0
                for i in range(j + 1, k + 1):
                    fi = fwd[iPath, j, i]
                    ti = taus[i]
                    zz = 0.0
                    for q in range(0, numFactors):
                        zij = lambdas[q][i - j]
                        zkj = lambdas[q][k - j]
                        zz += zij * zkj
                    muA += fi * ti * zz / (1.0 + fi * ti)

                itoTerm = 0.0
                for q in range(0, numFactors):
                    itoTerm += lambdas[q][k - j] * lambdas[q][k - j]

                randomTerm = 0.0
                for q in range(0, numFactors):
                    wq = gMatrix[iPath, j, q]
                    randomTerm += lambdas[q][k - j] * wq
                randomTerm *= sqrtdtj

                x = np.exp(muA * dtj - 0.5 * itoTerm * dtj + randomTerm)
                fwdB[k] = fwd[iPath, j, k] * x

                muB = 0.0
                for i in range(j + 1, k + 1):
                    fi = fwdB[k]
                    ti = taus[i]
                    zz = 0.0
                    for q in range(0, numFactors):
                        zij = lambdas[q][i - j]
                        zkj = lambdas[q][k - j]
                        zz += zij * zkj
                    muB += fi * ti * zz / (1.0 + fi * ti)

                muC = 0.5 * (muA + muB)

                x = np.exp(muC * dtj - 0.5 * itoTerm * dtj + randomTerm)
                fwd[iPath, j + 1, k] = fwd[iPath, j, k] * x

    return fwd
Exemplo n.º 12
0
def LMMSimulateFwds1F(numForwards, numPaths, numeraireIndex, fwd0, gammas,
                      taus, useSobol, seed):
    ''' One factor Arbitrage-free simulation of forward Libor curves in the
    spot measure following Hull Page 768. Given an initial forward curve,
    volatility term structure. The 3D matrix of forward rates by path, time
    and forward point is returned. This function is kept mainly for its
    simplicity and speed.

    NB: The Gamma volatility has an initial entry of zero. This differs from
    Hull's indexing by one and so is why I do not subtract 1 from the index as
    Hull does in his equation 32.14.

    The Number of Forwards is the number of points on the initial curve to the
    trade maturity date.

    But be careful: a cap that matures in 10 years with quarterly caplets has
    40 forwards BUT the last forward to reset occurs at 9.75 years. You should
    not simulate beyond this time. If you give the model 10 years as in the
    Hull examples, you need to simulate 41 (or in this case 11) forwards as the
    final cap or ratchet has its reset in 10 years. '''

    if len(gammas) != numForwards:
        raise FinError("Gamma vector does not have right number of forwards")

    if len(fwd0) != numForwards:
        raise FinError("The length of fwd0 is not equal to numForwards")

    if len(taus) != numForwards:
        raise FinError("The length of Taus is not equal to numForwards")

    np.random.seed(seed)
    # Even number of paths for antithetics
    numPaths = 2 * int(numPaths / 2)
    halfNumPaths = int(numPaths / 2)
    fwd = np.empty((numPaths, numForwards, numForwards))
    fwdB = np.zeros(numForwards)

    numTimes = numForwards

    if useSobol == 1:
        numDimensions = numTimes
        rands = getUniformSobol(halfNumPaths, numDimensions)
        gMatrix = np.empty((numPaths, numTimes))
        for iPath in range(0, halfNumPaths):
            for j in range(0, numTimes):
                u = rands[iPath, j]
                g = norminvcdf(u)
                gMatrix[iPath, j] = g
                gMatrix[iPath + halfNumPaths, j] = -g
    elif useSobol == 0:
        gMatrix = np.empty((numPaths, numTimes))
        for iPath in range(0, halfNumPaths):
            for j in range(0, numTimes):
                g = np.random.normal()
                gMatrix[iPath, j] = g
                gMatrix[iPath + halfNumPaths, j] = -g
    else:
        raise FinError("Use Sobol must be 0 or 1")

    for iPath in prange(0, numPaths):
        # Initial value of forward curve at time 0
        for iFwd in range(0, numForwards):
            fwd[iPath, 0, iFwd] = fwd0[iFwd]

        for j in range(0, numForwards - 1):  # TIME LOOP
            dtj = taus[j]
            sqrtdtj = np.sqrt(dtj)
            w = gMatrix[iPath, j]

            for k in range(j, numForwards):  # FORWARDS LOOP
                zkj = gammas[k - j]
                muA = 0.0

                for i in range(j + 1, k + 1):
                    fi = fwd[iPath, j, i]
                    zij = gammas[i - j]
                    ti = taus[i]
                    muA += zkj * fi * ti * zij / (1.0 + fi * ti)

                # predictor corrector
                x = np.exp(muA * dtj - 0.5 * (zkj**2) * dtj +
                           zkj * w * sqrtdtj)
                fwdB[k] = fwd[iPath, j, k] * x

                muB = 0.0
                for i in range(j + 1, k + 1):
                    fi = fwdB[k]
                    zij = gammas[i - j]
                    ti = taus[i]
                    muB += zkj * fi * ti * zij / (1.0 + fi * ti)

                muC = 0.5 * (muA + muB)

                x = np.exp(muC * dtj - 0.5 * (zkj**2) * dtj +
                           zkj * w * sqrtdtj)
                fwd[iPath, j + 1, k] = fwd[iPath, j, k] * x

    return fwd