def secondsmallestNumber(array): minimum_element = find_min.findMin(array) for iterator in array: if minimum_element == iterator: array.remove(iterator) minimum_element = find_min.findMin(array) return minimum_element
def secondsmallestNumber(array): v = find_min.findMin(array) for i in array: if v == i: array.remove(i) maxi = find_min.findMin(array) return maxi
def kth_smallest_ele(array, kthele): smallest_ele = 1 iterator = 1 lenght = FindLenght.count(array) while (iterator != kthele): if lenght == kthele: return Max.Max(array) else: smallest_ele = find_min.findMin(array) for j in array: if (j == smallest_ele): array.remove(smallest_ele) iterator += 1 smallest_ele = find_min.findMin(array) return smallest_ele
def test_arrayretutn7(): #arrange values = [5, 2, 4, 7, 3, 5] excepted = 2 #act actual = find_min.findMin(values) #assert assert excepted == actual
def findUnique(array): dictionary = dictionaryOperations.built_dictionary(array) listValues = list(dictionary.values()) minimum_value = find_min.findMin(listValues) for i in listValues: if i != minimum_value: b = (dictionaryOperations.find_key_from_dictionary(dictionary, i)) print(b, i) dictionary.pop(b)
def findUnique(array): not_unique = [] dictionary = dictionaryOperations.built_dictionary(array) listValues = list(dictionary.values()) minimum_value = find_min.findMin(listValues) for i in listValues: if i != minimum_value: b = (dictionaryOperations.find_key_from_dictionary(dictionary, i)) not_unique.append(b) dictionary.pop(b) return not_unique
def kth_largest_ele(array,kthele): lenght = FindLenght.count(array) if (lenght == kthele): return find_min.findMin(array) else: iterator = 1 while(iterator!=kthele): Largest_ele = Max.Max(array) for j in array: if (j == Largest_ele): array.remove(Largest_ele) iterator += 1 Largest_ele = Max.Max(array) return Largest_ele
def fit(self, X, y, maxEpochs=500): n, d = X.shape if y.ndim == 1: y = y[:, None] self.layer_sizes = [X.shape[1] ] + self.hidden_layer_sizes + [y.shape[1]] self.classification = y.shape[ 1] > 1 # assume it's classification iff y has more than 1 column # random init scale = 0.01 weights = list() for i in range(len(self.layer_sizes) - 1): W = scale * np.random.randn(self.layer_sizes[i + 1], self.layer_sizes[i]) b = scale * np.random.randn(1, self.layer_sizes[i + 1]) weights.append((W, b)) weights_flat = flatten_weights(weights) for e in range(maxEpochs - 1): printProgressBar(self, iteration=e + 1, total=maxEpochs, prefix='Progress:', suffix=' | Epoch #: ') random_indices = np.random.randint(n, size=2000) #Take a random sample of corresponding X and y X_rand = X[random_indices] y_rand = y[random_indices] weights_flat_new, f = findMin(self.funObj, weights_flat, self.max_iter, X_rand, y_rand, verbose=True, alpha=0.0001) weights_flat = weights_flat_new self.weights = unflatten_weights(weights_flat_new, self.layer_sizes)