Exemplo n.º 1
0
# In[197]:


print("==============Get Backtest Results===========")
perf_stats_all = backtest_stats(account_value=df_account_value, value_col_name = 'total_assets')


# <a id='6.2'></a>
# ## 7.2 BackTestPlot

# In[198]:


print("==============Compare to DJIA===========")
get_ipython().run_line_magic('matplotlib', 'inline')
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(df_account_value, 
             baseline_ticker = '^DJI', 
             baseline_start = '2019-01-01',
             baseline_end = '2021-01-01', value_col_name = 'total_assets')


# In[ ]:




df_account_value, df_actions = DRLAgent.DRL_prediction(model=trained_a2c,
                                                       environment=e_trade_gym)
df_account_value.shape
df_account_value.tail()

############# BACKTEST #############

print("==============Get Backtest Results===========")
now = datetime.datetime.now().strftime('%Y%m%d-%Hh%M')

perf_stats_all = backtest_stats(account_value=df_account_value)
perf_stats_all = pd.DataFrame(perf_stats_all)

#baseline stats
print("==============Get Baseline Stats===========")
baseline_df = get_baseline(ticker="^DJI", start='2019-01-01', end='2021-01-01')

stats = backtest_stats(baseline_df, value_col_name='close')

print("==============Compare to DJIA===========")
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(df_account_value,
              baseline_ticker='^DJI',
              baseline_start='2019-01-01',
              baseline_end='2021-01-01')

df_account_value.date
Exemplo n.º 3
0
def main():
    if not os.path.exists("./" + config.DATA_SAVE_DIR):
        os.makedirs("./" + config.DATA_SAVE_DIR)
    if not os.path.exists("./" + config.TRAINED_MODEL_DIR):
        os.makedirs("./" + config.TRAINED_MODEL_DIR)
    if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR):
        os.makedirs("./" + config.TENSORBOARD_LOG_DIR)
    if not os.path.exists("./" + config.RESULTS_DIR):
        os.makedirs("./" + config.RESULTS_DIR)

    print(config.START_DATE)
    print(config.END_DATE)
    print(config.PENNY_STOCKS)

    df = YahooDownloader(start_date=config.START_DATE,
                         end_date=config.END_DATE,
                         ticker_list=config.PENNY_STOCKS).fetch_data()

    fe = FeatureEngineer(use_technical_indicator=True,
                         tech_indicator_list=config.TECHNICAL_INDICATORS_LIST,
                         use_turbulence=True,
                         user_defined_feature=False)

    processed = fe.preprocess_data(df)
    information_cols = list(processed)
    information_cols.remove('date')
    information_cols.remove('tic')

    stock_dimension = len(processed.tic.unique())
    state_space = 1 + 2 * stock_dimension + len(
        information_cols) * stock_dimension
    print("Stock Dimension: {}, State Space: {}".format(
        stock_dimension, state_space))

    env_kwargs = {
        "hmax": 100,
        "initial_amount": 5000,
        # Since in Indonesia the minimum number of shares per trx is 100, then we scaled the initial amount by dividing it with 100
        "buy_cost_pct": 0.00,  # IPOT has 0.19% buy cost
        "sell_cost_pct": 0.00,  # IPOT has 0.29% sell cost
        "state_space": state_space,
        "stock_dim": stock_dimension,
        "tech_indicator_list": information_cols,
        "action_space": stock_dimension,
        "reward_scaling": 1e-4,
        "print_verbosity": 5
    }

    rebalance_window = 63  # rebalance_window is the number of days to retrain the model
    validation_window = 63  # validation_window is the number of days to do validation and trading (e.g. if validation_window=63, then both validation and trading period will be 63 days)
    train_start = config.START_DATE
    train_end = config.START_TRADE_DATE
    val_test_start = config.START_TRADE_DATE
    val_test_end = config.END_DATE

    ensemble_agent = DRLEnsembleAgent(df=processed,
                                      train_period=(train_start, train_end),
                                      val_test_period=(val_test_start,
                                                       val_test_end),
                                      rebalance_window=rebalance_window,
                                      validation_window=validation_window,
                                      **env_kwargs)

    A2C_model_kwargs = {
        'n_steps': 5,
        'ent_coef': 0.01,
        'learning_rate': 0.0005
    }

    PPO_model_kwargs = {
        "ent_coef": 0.01,
        "n_steps": 2048,
        "learning_rate": 0.00025,
        "batch_size": 128
    }

    DDPG_model_kwargs = {
        "action_noise": "ornstein_uhlenbeck",
        "buffer_size": 50000,
        "learning_rate": 0.000005,
        "batch_size": 128
    }

    TD3_model_kwargs = {
        "batch_size": 100,
        "buffer_size": 1000000,
        "learning_rate": 0.001
    }

    timesteps_dict = {'a2c': 4000, 'ppo': 4000, 'ddpg': 4000, 'td3': 4000}

    df_summary = ensemble_agent.run_ensemble_strategy(A2C_model_kwargs,
                                                      PPO_model_kwargs,
                                                      DDPG_model_kwargs,
                                                      TD3_model_kwargs,
                                                      timesteps_dict)

    print(df_summary)

    unique_trade_date = processed[(processed.date > val_test_start) & (
        processed.date <= val_test_end)].date.unique()

    df_trade_date = pd.DataFrame({'datadate': unique_trade_date})

    df_account_value = pd.DataFrame()
    for i in range(rebalance_window + validation_window,
                   len(unique_trade_date) + 1, rebalance_window):
        print(rebalance_window + validation_window)
        print(len(unique_trade_date) + 1)
        print(rebalance_window)
        try:
            temp = pd.read_csv('results/account_value_trade_{}_{}.csv'.format(
                'ensemble', i))
            df_account_value = df_account_value.append(temp, ignore_index=True)
        except:
            break
    sharpe = (252**0.5) * df_account_value.account_value.pct_change(
        1).mean() / df_account_value.account_value.pct_change(1).std()
    print('Sharpe Ratio: ', sharpe)
    df_account_value = df_account_value.join(
        df_trade_date[validation_window:].reset_index(drop=True))

    df_account_value.account_value.plot()

    print("==============Get Backtest Results===========")
    now = datetime.datetime.now().strftime('%Y%m%d-%Hh%M')

    perf_stats_all = backtest_stats(account_value=df_account_value)
    perf_stats_all = pd.DataFrame(perf_stats_all)

    print("==============Compare to IHSG===========")
    backtest_plot(df_account_value,
                  baseline_ticker='^DJI',
                  baseline_start=df_account_value.loc[0, 'date'],
                  baseline_end=df_account_value.loc[len(df_account_value) - 1,
                                                    'date'])
Exemplo n.º 4
0
    environment = e_trade_gym)

df_account_value.shape

df_account_value.head()
df_actions.head()

print("==============Get Backtest Results===========")
now = datetime.datetime.now().strftime('%Y%m%d-%Hh%M')

perf_stats_all = backtest_stats(account_value=df_account_value)
perf_stats_all = pd.DataFrame(perf_stats_all)
perf_stats_all.to_csv("./"+config.RESULTS_DIR+"/perf_stats_all_"+now+'.csv')


print("==============Compare to DJIA===========")
# %matplotlib inline
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(df_account_value, config, 
              baseline_start = '2019-01-01',
              baseline_end = '2021-01-01')


print("==============Get Baseline Stats===========")
baseline_df = get_baseline(
        ticker="^DJI", start = '2019-01-01',
                                  end = '2021-01-01')

stats = backtest_stats(baseline_df, value_col_name = 'close')
Exemplo n.º 5
0
def train_one(fetch=False):
    """
    train an agent
    """
    if fetch:
        df = fetch_and_store()
    else:
        df = load()

    counts = df[['date', 'tic']].groupby(['date']).count().tic
    assert counts.min() == counts.max()

    print("==============Start Feature Engineering===========")
    fe = FeatureEngineer(
        use_technical_indicator=True,
        tech_indicator_list=config.TECHNICAL_INDICATORS_LIST,
        use_turbulence=True,
        # use_turbulence=False,
        user_defined_feature=False,
    )

    processed = fe.preprocess_data(df)

    # Training & Trading data split
    start_date, trade_date, end_date = calculate_split(df,
                                                       start=config.START_DATE)
    print(start_date, trade_date, end_date)
    train = data_split(processed, start_date, trade_date)
    trade = data_split(processed, trade_date, end_date)

    print(
        f'\n******\nRunning from {start_date} to {end_date} for:\n{", ".join(config.CRYPTO_TICKER)}\n******\n'
    )

    # calculate state action space
    stock_dimension = len(train.tic.unique())
    state_space = (1 + (2 * stock_dimension) +
                   (len(config.TECHNICAL_INDICATORS_LIST) * stock_dimension))

    env_kwargs = {
        "hmax": 100,
        "initial_amount": 100000,
        "buy_cost_pct": 0.0026,
        "sell_cost_pct": 0.0026,
        "state_space": state_space,
        "stock_dim": stock_dimension,
        "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST,
        "action_space": stock_dimension,
        "reward_scaling": 1e-4
    }

    e_train_gym = StockTradingEnv(df=train, **env_kwargs)

    e_trade_gym = StockTradingEnv(df=trade,
                                  turbulence_threshold=250,
                                  make_plots=True,
                                  **env_kwargs)

    env_train, _ = e_train_gym.get_sb_env()
    env_trade, obs_trade = e_trade_gym.get_sb_env()

    agent = DRLAgent(env=env_train)

    print("==============Model Training===========")
    now = datetime.datetime.now().strftime(config.DATETIME_FMT)

    model_sac = agent.get_model("sac")
    trained_sac = agent.train_model(
        model=model_sac,
        tb_log_name="sac",
        # total_timesteps=100
        total_timesteps=80000)

    print("==============Start Trading===========")
    df_account_value, df_actions = DRLAgent.DRL_prediction(
        # model=trained_sac, test_data=trade, test_env=env_trade, test_obs=obs_trade
        trained_sac,
        e_trade_gym)
    df_account_value.to_csv(
        f"./{config.RESULTS_DIR}/df_account_value_{now}.csv")
    df_actions.to_csv(f"./{config.RESULTS_DIR}/df_actions_{now}.csv")

    df_txns = pd.DataFrame(e_trade_gym.transactions,
                           columns=['date', 'amount', 'price', 'symbol'])
    df_txns = df_txns.set_index(pd.DatetimeIndex(df_txns['date'], tz=pytz.utc))
    df_txns.to_csv(f'./{config.RESULTS_DIR}/df_txns_{now}.csv')

    df_positions = pd.DataFrame(e_trade_gym.positions,
                                columns=['date', 'cash'] +
                                config.CRYPTO_TICKER)
    df_positions = df_positions.set_index(
        pd.DatetimeIndex(df_positions['date'],
                         tz=pytz.utc)).drop(columns=['date'])
    df_positions['cash'] = df_positions.astype(
        {col: np.float64
         for col in df_positions.columns})
    df_positions.to_csv(f'./{config.RESULTS_DIR}/df_positions_{now}.csv')

    print("==============Get Backtest Results===========")
    perf_stats_all = backtest_stats(df_account_value,
                                    transactions=df_txns,
                                    positions=df_positions)
    perf_stats_all = pd.DataFrame(perf_stats_all)
    perf_stats_all.to_csv(f"./{config.RESULTS_DIR}/perf_stats_all_{now}.csv")

    backtest_plot(df_account_value,
                  baseline_start=trade_date,
                  baseline_end=end_date,
                  positions=df_positions,
                  transactions=df_txns)