Exemplo n.º 1
0
    def _setup_equation(self, biomass_height):
        height = biomass_height + self._layer_height
        size = height * self._layer
        mesh = self.space.construct_mesh(height)
        variables, terms = [], []
        phi = CellVariable(name=self.solute.name, mesh=mesh, hasOld=True)
        for r in self.reactions:
            variables.append(
                CellVariable(name=f"{r.bacteria.name}_rate",
                             mesh=mesh,
                             value=0.0))
            terms.append(
                ImplicitSourceTerm(coeff=(variables[-1] / (phi + self._sr))))
        equation = DiffusionTerm(coeff=self.diffusivity) - sum(terms)
        phi.constrain(1, where=mesh.facesTop)

        for var, coef in zip(
                variables,
            [r.rate_coefficient()[:size] for r in self.reactions]):
            try:
                var.setValue(coef / self.space.dV)
            except ValueError as err:
                print("Boundary layer height greater than system size")
                raise err
        phi.setValue(self.solute.value.reshape(-1)[:size])
        return equation, phi, size
Exemplo n.º 2
0
    def add_source_term_from(self, path, coeff = 1):
        """
        Add a source term from the model path

        Args:
            path (str): Path to model store
            coeff (int, float): coeff for source term

        Raises:
            ValueError if path does not point to an object
        """
        if self.finalized:
            raise RuntimeError('Equation already finalized, cannot add terms')

        self.logger.info('{} Adding source term from {!r} (coeff={}'.format(
            self, path, coeff))

        if not isinstance(coeff, (int, float)):
            raise ValueError('Source coeff should be int or float, not {}'.format(type(coeff)))

        if path in self.source_exprs:
            raise RuntimeError('Source term path already exists: {!r}'.format(path))

        obj = self.model.get_object(path)
        """:type: Process"""

        # expr = obj.evaluate()
        # self.logger.debug('Created source expr: {!r}'.format(expr))
        self.source_coeffs[path] = coeff

        full_expr = obj.as_term()
        self.source_exprs[path] = coeff * full_expr
        self.source_formulae[path] = coeff * obj.expr()
        var, S0, S1 = obj.as_source_for(self.varname)
        assert var is self.var, 'Got var: {!r} and self.var: {!r}'.format(
            var, self.var)

        if S1 is not 0:  # do not use != 0 as it fails for array type vars
            S1 = ImplicitSourceTerm(coeff=S1, var=self.var)
            term = S0 + S1
        else:
            term = S0
        self.source_terms[path] = term * coeff

        self.logger.debug('Created source {!r}: {!r}'.format(path, term))
Exemplo n.º 3
0
    def test_add_source_term_from(self, model):

        eqn = ModelEquation(model, 'domain.abc', coeff=5)
        # model.get_object.return_value = rv = mock.MagicMock(CellVariable)
        rv = model.get_object.return_value
        rv.as_term = fullexpr = mock.Mock(SourceTerm)
        fullexpr.return_value = mock.MagicMock(Variable)
        rv.expr = expr = mock.MagicMock(CellVariable)
        rv.as_source_for = source = mock.Mock(SourceTerm)
        source.return_value = (mock.Mock(CellVariable), mock.Mock(SourceTerm),
                               mock.Mock(SourceTerm))
        # rv.__mul__ = lambda x: x  # for eqn_term * coeff

        S0 = eqn.var
        S1 = 3
        S1term = ImplicitSourceTerm(var=eqn.var, coeff=S1)
        source.return_value = eqn.var, S0, S1

        varpath = 'domain.var1'
        coeff = 1.5

        with pytest.raises(ValueError):
            eqn.add_source_term_from(varpath, coeff=None)

        eqn.add_source_term_from(varpath, coeff)

        assert varpath in eqn.source_terms
        assert varpath in eqn.source_exprs
        assert varpath in eqn.source_formulae

        assert eqn.source_exprs[varpath] == coeff * fullexpr()
        assert eqn.source_formulae[varpath] == coeff * expr()
        # assert eqn.source_terms[varpath] == S0 + S1term

        with pytest.raises(RuntimeError):
            eqn.add_source_term_from(varpath, coeff)
Exemplo n.º 4
0
    print("Implent more stuff you lazy f**k")

# Define the equations

# evaluating kappa
kappa = (2.0 / 3.0) * chi_AB

# eqn 1 is the 2nd order transport equation
eq1 = (TransientTerm(var=x_a)) == DiffusionTerm(coeff=x_a * (1 - x_a),
                                                var=mu_AB)

# Try constant mobility
eq0 = (TransientTerm(var=x_a)) == DiffusionTerm(coeff=1, var=mu_AB)

# eqn 2 is the chemical potential definition
eq2 = (ImplicitSourceTerm(coeff=1., var=mu_AB)) == ImplicitSourceTerm(
    coeff=d2gdx_a2, var=x_a) - d2gdx_a2 * x_a + dgdx_a - DiffusionTerm(
        coeff=kappa, var=x_a)

# write eq2 without the fipy trick:
eq3 = (ImplicitSourceTerm(
    coeff=1, var=mu_AB)) == dgdx_a - DiffusionTerm(coeff=kappa, var=x_a)

# Adding the equations together
eq = eq1 & eq2

elapsed = 0.
dt = DT
if __name__ == "__main__":
    duration = TIME_MAX
Exemplo n.º 5
0
PHI = np.tan(N * psi / 2)
PHI_SQ = PHI**2
BETA = (1. - PHI_SQ) / (1. + PHI_SQ)
D_BETA_D_PSI = -N * 2 * PHI / (1 + PHI_SQ)
D_DIAG = (1 + C_ani * BETA)
D_OFF = C_ani * D_BETA_D_PSI
I0 = Variable(value=((1, 0), (0, 1)))
I1 = Variable(value=((0, -1), (1, 0)))
DIF_COEF = ALPHA**2 * (1. + C_ani * BETA) * (D_DIAG * I0 + D_OFF * I1)

TAU = 0.0003
KAPPA_1 = 0.9
KAPPA_2 = 20.

phase_EQ = (TransientTerm(TAU) == DiffusionTerm(DIF_COEF) + ImplicitSourceTerm(
    (phase - 0.5 - KAPPA_1 / np.pi * np.arctan(KAPPA_2 * D_temp)) *
    (1 - phase)))

#%% Circular Solidified Region in the Center
radius = DX * 5.0
C_circ = (NX * DX / 2, NY * DY / 2)
X, Y = mesh.cellCenters
phase.setValue(1., where=((X - C_circ[0])**2 + (Y - C_circ[1])**2) < radius**2)
D_temp.setValue(-0.5)

#%% Plotting

if __name__ == "__main__":
    try:
        import pylab
#warning: avoid confusion between convectionCoeff in that fipy documentation, which refers to terms involving "a", and convectionCoeff here, which refers to a heat transfer convection coefficient at a boundary
Gamma0 = D_thermal
Gamma = FaceVariable(mesh=mesh, value=Gamma0)
mask = surfaceFaces
Gamma.setValue(0., where=mask)
dPf = FaceVariable(mesh=mesh,
                   value=mesh._faceToCellDistanceRatio *
                   mesh.cellDistanceVectors)
Af = FaceVariable(mesh=mesh, value=mesh._faceAreas)
#RobinCoeff = (mask * Gamma0 * Af / (dPf.dot(a) + b)).divergence  #a is zero in our case
b = 1.
RobinCoeff = (mask * Gamma0 * Af / b).divergence  #a is zero in our case
#eq = (TransientTerm() == DiffusionTerm(coeff=Gamma) + RobinCoeff * g - ImplicitSourceTerm(coeff=RobinCoeff * mesh.faceNormals.dot(a)))   #a is zero in our case
# g in this formulation is -convectionCoeff/k*var, where var=T-T_infinity
eq = (TransientTerm() == DiffusionTerm(coeff=Gamma) +
      ImplicitSourceTerm(RobinCoeff * -convectionCoeff / k))

# embed()
# sys.exit()

#either show the fipy viewer or make a T(s,t) plot; doing both at once is too much of a hassle to debug
showViewer = False  #SETTING
if showViewer:
    #viewer=Viewer(vars=var,datamin=T_infinity,datamax=T_initial)
    viewer = Viewer(vars=var)

    viewer.plot()

dt_explicit = cellSize**2 / 2. / D_thermal

tFinal_nd = 2.  #SETTING  dimensionless final temperature
Exemplo n.º 7
0
D_Zohm = (D_max + D_min) / 2.0 + ((D_max - D_min) * numerix.tanh(Z)) / 2.0
# Stap's Model
alpha_sup = 0.5
D_Staps = D_min + (D_max - D_min) / (1.0 +
                                     alpha_sup * numerix.dot(Z.grad, Z.grad))
# Flow-Shear Model
a1, a3 = 1.0, 0.5  # ASSUMES a2 = 0
D_Shear = D_min + (D_max - D_min) / (1.0 + a1 *
                                     (Z)**2 + a3 * numerix.dot(Z.grad, Z.grad))

# CHOOSE DIFFUSIVITY HERE!
D_choice = D_Staps

# If Diffusivity is a Cell/Face variable
Diffusivity.setValue(D_choice)
Diffusivity.equation = (ImplicitSourceTerm(1.0))

# ----------------- Boundary Conditions -------------------
"""
	Density Boundary Conditions:
	d/dx(n(0)) == n / lambda_n
	d/dx(n(L)) == -Gamma_c / Diffusivity
"""
density.faceGrad.constrain(density.faceValue / lambda_n, mesh.facesLeft)

density.faceGrad.constrain(-Gamma_c / Diffusivity.faceValue, mesh.facesRight)
"""
	Temperature Boundary Conditions:
	d/dx(T(0)) = T / lambda_T
	d/dx(T(L)) = zeta*(Gamma_c*T - q_c*(gamma - 1)) / (Diffusivity * n)
"""
Exemplo n.º 8
0
noise = UniformNoiseVariable(mesh=mesh,
                             minimum=(a_0 - noise_mag),
                             maximum=(a_0 + noise_mag))
a[:] = noise

# differentiate g(a)
dgda = ((1.0 / n_a) - (1.0 / n_b)) + (1.0 / n_a) * numerix.log(a) - (
    1.0 / n_b) * numerix.log(1.0 - a) + chi_AB * (1.0 - 2 * a)
d2gda2 = (1.0 / (n_a * a)) + (1.0 / (n_b * (1.0 - a))) - 2 * chi_AB

# Evaluate kappa
kappa = (2.0 / 3.0) * chi_AB

# Defining the equations
eq1 = (TransientTerm(var=a)) == DiffusionTerm(coeff=a * (1.0 - a), var=mu_AB)
eq2 = (ImplicitSourceTerm(
    coeff=1.0, var=mu_AB)) == dgda - DiffusionTerm(coeff=kappa, var=a)
# eq2 = (ImplicitSourceTerm(coeff=1.0, var=mu_AB)) == ImplicitSourceTerm(coeff=d2gda2, var=a) - d2gda2*a + dgda - DiffusionTerm(coeff=kappa, var=a)

# Coupling the equations
eq = eq1 & eq2

# Setting up the solver
solver = LinearLUSolver(tolerance=1e-9, iterations=50, precon="ilu")

# Set up time stepping
dt = 10.0
duration = 20000
time_stride = 100
timestep = 0
elapsed = 0
Exemplo n.º 9
0
cm.constrain(0, m.facesLeft)
cm.constrain(0, m.facesRight)

cim.constrain(0, m.facesLeft)
cim.constrain(0, m.facesRight)

# advective flow velocity 
u = FaceVariable(mesh=m, value=(0.0,), rank=1)

# 1D convection diffusion equation (mobile domain)
# version with \frac{\partial c_{im}}{\partial t}
eqM =  (TransientTerm(1.0,var=cm) + TransientTerm(betaT,var=cim) == 
       DiffusionTerm(DR,var=cm) - ExponentialConvectionTerm(u/(Rm*phim),var=cm))

# immobile domain (lumped approach)
eqIM = TransientTerm(Rim*phiim,var=cim) == beta/Rim*(cm - ImplicitSourceTerm(1.0,var=cim))

# couple equations
eqn = eqM & eqIM

viewer = Viewer(vars=(cm,cim), datamin=0.0, datamax=1.0)
viewer.plot()
time = 0.0

for step in range(steps):
    time += timeStep

    if time < 0.5:
        u.setValue((1.0,))
    elif time < 1.0:
        u.setValue((0.0,))
Exemplo n.º 10
0
D = a = epsilon = 1.
# kappa = log(phi)
N_A = 400
N_B = 400
chi_AB = 0.0075
kappa = chi_AB / 6.0
# dfdphi = a**2 * phi * (1 - phi) * (1 - 2 * phi)
# dfdphi_ = a**2 * (1 - phi) * (1 - 2 * phi)
# d2fdphi2 = a**2 * (1 - 6 * phi * (1 - phi))

dfdphi = ((1.0 / N_A) - (1.0 / N_B)) + (1.0 / N_A) * numerix.log(phi) - (
    1.0 / N_B) * numerix.log(1.0 - phi) + chi_AB * (1.0 - 2 * phi)
d2fdphi2 = (1.0 / (N_A * phi)) + (1.0 / (N_B * (1.0 - phi))) - 2 * chi_AB
eq1 = (TransientTerm(var=phi) == DiffusionTerm(coeff=D, var=psi))
eq2 = (ImplicitSourceTerm(
    coeff=1., var=psi) == ImplicitSourceTerm(coeff=d2fdphi2, var=phi) -
       d2fdphi2 * phi + dfdphi - DiffusionTerm(coeff=kappa, var=phi))

eq = eq1 & eq2

elapsed = 0.
dt = 1.0
if __name__ == "__main__":
    duration = 1000.

solver = LinearLUSolver(tolerance=1e-9, iterations=500)

while elapsed < duration:
    elapsed += dt
    eq.solve(dt=dt, solver=solver)
    phi.setValue(0.0, where=phi < 0.0)
Exemplo n.º 11
0
                   value=mesh._faceToCellDistanceRatio *
                   mesh.cellDistanceVectors)
Af = FaceVariable(mesh=mesh, value=mesh._faceAreas)
b = k
#RobinCoeff = (mask * Gamma0 * Af * mesh.faceNormals / (-dPf.dot(a) + b)).divergence  #I changed a sign in the denominator since I suspect a sign error
#a is convectionCoeff times n_hat
#20181211: I am getting same result whichever sign in the denominator I go with; solution is stuck at initial condition
RobinCoeff = (
    mask * Gamma0 * Af * mesh.faceNormals /
    (-convectionCoeff * dPf.dot(mesh.faceNormals) + b)
).divergence  #I changed a sign in the denominator since I suspect a sign error
g = convectionCoeff * T_infinity
#eq = (TransientTerm() == DiffusionTerm(coeff=Gamma) + RobinCoeff * g - ImplicitSourceTerm(coeff=RobinCoeff * mesh.faceNormals.dot(a)))
#a is convectionCoeff times n_hat
eq = (TransientTerm() == DiffusionTerm(coeff=Gamma) + RobinCoeff * g -
      ImplicitSourceTerm(coeff=RobinCoeff * convectionCoeff))

# embed()
# sys.exit()

#either show the fipy viewer or make a T(s,t) plot; doing both at once is too much of a hassle to debug
showViewer = False  #SETTING
if showViewer:
    #viewer=Viewer(vars=var,datamin=T_infinity,datamax=T_initial)
    viewer = Viewer(vars=var)

    viewer.plot()
    time.sleep(.25)

dt_explicit = cellSize**2 / 2. / D_thermal
Exemplo n.º 12
0
noise = GaussianNoiseVariable(mesh=mesh,
                              mean = A_RAW,
                              variance = NOISE_MAGNITUDE).value

x_a[:] = noise


dgdx_a = ((1.0/N_A) - (1.0/N_B)) + (1.0/N_A)*numerix.log(x_a) - (1.0/N_B)*numerix.log(1.0 - x_a) + chi_AB*(1.0 - 2*x_a)


kappa = (1.0/6.0)*chi_AB

# eq1 = TransientTerm(var=x_a) == ConvectionTerm(coeff= ((x_a*(1.0 - x_a))*[[1]]).rank *xi.faceGrad) + DiffusionTerm((x_a *(1.0 - x_a), kappa), var = x_a)
eq1 = TransientTerm(var=x_a) == DiffusionTerm(coeff= x_a*(1.0 - x_a), var = xi) + DiffusionTerm((x_a *(1.0 - x_a), kappa), var = x_a)

eq2 = ImplicitSourceTerm(coeff=1, var= xi) == dgdx_a

eq = eq1 & eq2


elapsed = 0.
dt = DT
if __name__ == "__main__":
    duration = TIME_MAX


time_stride = TIME_STRIDE
timestep = 0

# Defining the solver
solver = LinearLUSolver(tolerance=1e-10, iterations=50)
Exemplo n.º 13
0
PHI = np.tan(N * psi / 2)
PHI_SQ = PHI ** 2
BETA = (1. - PHI_SQ) / (1. + PHI_SQ)
D_BETA_D_PSI = -N * 2 * PHI / (1 + PHI_SQ)
D_DIAG = (1 + C_ani * BETA)
D_OFF = C_ani * D_BETA_D_PSI
I0 = Variable(value = ((1, 0), (0, 1)))
I1 = Variable(value = ((0, -1), (1, 0)))
DIF_COEF = ALPHA ** 2 * (1. + C_ani * BETA) * (D_DIAG * I0 + D_OFF * I1)

TAU = 0.0003
KAPPA_1 = 0.9
KAPPA_2 = 20.

phase_EQ = (TransientTerm(TAU) == DiffusionTerm(DIF_COEF) 
            + ImplicitSourceTerm((phase - 0.5 - KAPPA_1 / np.pi
                                  * np.arctan(KAPPA_2 * D_temp)) * (1 - phase)))

#%% Circular Solidified Region in the Center
radius = DX * 5.0
C_circ = (NX * DX / 2, NY * DY / 2)
X, Y = mesh.cellCenters
phase.setValue(1., where=((X - C_circ[0])**2 + (Y - C_circ[1])**2) < radius**2)
D_temp.setValue(-0.5)

#%% Plotting

if __name__ == "__main__": 
    try: 
        import pylab
        class DendriteViewer(Matplotlib2DGridViewer):
            def __init__(self, phase, D_temp, title = None,
Exemplo n.º 14
0
c.value = 0.0
c.setValue((0.3 * numerix.sin(2.0 * x * numerix.pi)) + 0.5)

# Setting up the no-flux boundary conditions
c.faceGrad.constrain(0.0, where=mesh.facesLeft)
c.faceGrad.constrain(0.0, where=mesh.facesRight)

# Provide value for diffusion and reaction coefficient
D = 1.0
k = -2.0

# Specifying our alpha value. We will only use backwards Euler going forward
alpha = 1

# Defining the equation with the reaction term.
eq = TransientTerm() == DiffusionTerm(coeff=D) + ImplicitSourceTerm(coeff=k)

# We can use a much larger dt now since we are using an implicit method.
dt = 0.001

# We might not want to see the output from every single timestep, so we define a stride parameter
time_stride = 100
timestep = 0
run_time = 0.5
t = timestep * dt

# We first initialise the default viewer to get things started:

# if __name__ == "__main__":
#     viewer = Viewer(vars=(c), datamin=0., datamax=1.)
                   value=mesh._faceToCellDistanceRatio *
                   mesh.cellDistanceVectors)
b = k
#RobinCoeff = (mask * Gamma0 * Af * mesh.faceNormals / (-dPf.dot(a) + b)).divergence  #I changed a sign in the denominator since I suspect a sign error
#a is convectionCoeff times n_hat
#20181211: I am getting same result whichever sign in the denominator I go with; solution is stuck at initial condition
RobinCoeff = (
    mask * Gamma0 * mesh.faceNormals /
    (-convectionCoeff * dPf.dot(mesh.faceNormals) + b)
)  #I changed a sign in the denominator since I suspect a sign error
g = convectionCoeff * T_infinity
#eq = (TransientTerm() == DiffusionTerm(coeff=Gamma) + RobinCoeff * g - ImplicitSourceTerm(coeff=RobinCoeff * mesh.faceNormals.dot(a)))
#a is convectionCoeff times n_hat
eq = (TransientTerm() == DiffusionTerm(coeff=Gamma) +
      (RobinCoeff * g).divergence -
      ImplicitSourceTerm(coeff=(RobinCoeff * convectionCoeff).divergence))

# embed()
# sys.exit()

#either show the fipy viewer or make a T(s,t) plot; doing both at once is too much of a hassle to debug
showViewer = False  #SETTING
if showViewer:
    #viewer=Viewer(vars=var,datamin=T_infinity,datamax=T_initial)
    viewer = Viewer(vars=var)

    viewer.plot()
    time.sleep(.25)

dt_explicit = cellSize**2 / 2. / D_thermal
Exemplo n.º 16
0
shift = 1.

KMVar = CellVariable(mesh=mesh, value=params['KM'] * shift, hasOld=1)
KCVar = CellVariable(mesh=mesh, value=params['KC'] * shift, hasOld=1)
TMVar = CellVariable(mesh=mesh, value=params['TM'] * shift, hasOld=1)
TCVar = CellVariable(mesh=mesh, value=params['TC'] * shift, hasOld=1)
P3Var = CellVariable(mesh=mesh, value=params['P3'] * shift, hasOld=1)
P2Var = CellVariable(mesh=mesh, value=params['P2'] * shift, hasOld=1)
RVar = CellVariable(mesh=mesh, value=params['R'], hasOld=1)

PN = P3Var + P2Var

KMscCoeff = params['chiK'] * (RVar + 1) * (1 - KCVar - KMVar.cellVolumeAverage)
KMspCoeff = params['lambdaK'] / (1 + PN / params['kappaK'])
KMEq = TransientTerm() - KMscCoeff + ImplicitSourceTerm(KMspCoeff)

TMscCoeff = params['chiT'] * (1 - TCVar - TMVar.cellVolumeAverage)
TMspCoeff = params['lambdaT'] * (KMVar + params['zetaT'])
TMEq = TransientTerm() - TMscCoeff + ImplicitSourceTerm(TMspCoeff)

TCscCoeff = params['lambdaT'] * (TMVar * KMVar).cellVolumeAverage
TCspCoeff = params['lambdaTstar']
TCEq = TransientTerm() - TCscCoeff + ImplicitSourceTerm(TCspCoeff)

PIP2PITP = PN / (PN / params['kappam'] + PN.cellVolumeAverage /
                 params['kappac'] + 1) + params['zetaPITP']

P3spCoeff = params['lambda3'] * (TMVar + params['zeta3T'])
P3scCoeff = params['chi3'] * KMVar * (PIP2PITP /
                                      (1 + KMVar / params['kappa3']) +
Exemplo n.º 17
0
alpha = 0.015
temperature = 1.

dx = L / nx

mesh = Grid1D(dx=dx, nx=nx)

phase = CellVariable(name='PhaseField', mesh=mesh, value=1.)

theta = ModularVariable(name='Theta', mesh=mesh, value=1.)
theta.setValue(0., where=mesh.cellCenters[0] > L / 2.)

mPhiVar = phase - 0.5 + temperature * phase * (1 - phase)
thetaMag = theta.old.grad.mag
implicitSource = mPhiVar * (phase - (mPhiVar < 0))
implicitSource += (2 * s + epsilon**2 * thetaMag) * thetaMag

phaseEq = TransientTerm(phaseTransientCoeff) == \
          ExplicitDiffusionTerm(alpha**2) \
          - ImplicitSourceTerm(implicitSource) \
          + (mPhiVar > 0) * mPhiVar * phase

if __name__ == '__main__':

    phaseViewer = Viewer(vars=phase)
    phaseViewer.plot()
    for step in range(steps):
        phaseEq.solve(phase, dt=timeStepDuration)
        phaseViewer.plot()
    input('finished')
Exemplo n.º 18
0
# evaluating kappa
kappa = (1.0 / 6.0) * chi_AB

# # eqn 1 is the 2nd order transport equation
# eq1 = (TransientTerm(var=x_a)) == DiffusionTerm(coeff = x_a * (1 - x_a), var=mu_AB)

# # eqn 2 is the chemical potential definition
# eq2 = (ImplicitSourceTerm(coeff=1. , var=mu_AB)) == ImplicitSourceTerm(coeff=d2gdx_a2, var=x_a) - d2gdx_a2 * x_a + dgdx_a - DiffusionTerm(coeff=kappa, var=x_a)

# eq1 is the transport equation
eq1 = (TransientTerm(coeff=numerix.exp(a), var=a)) == DiffusionTerm(
    coeff=numerix.exp(a) * (1.0 - numerix.exp(a)), var=mu_AB)

#eq2 is the chemical potential
eq2 = (ImplicitSourceTerm(
    coeff=1., var=mu_AB)) == dgda * (1.0 / numerix.exp(a)) - DiffusionTerm(
        coeff=kappa, var=exp_a)

eq3 = (ImplicitSourceTerm(coeff=1, var=exp_a)) == numerix.exp(a)
# Adding the equations together
eq = eq1 & eq2 & eq3

elapsed = 0.
dt = DT
if __name__ == "__main__":
    duration = TIME_MAX

time_stride = TIME_STRIDE
timestep = 0

# Defining the solver to improve numerical stabilty