Exemplo n.º 1
0
    def transform_data_row_index(cls, index_values, dimension_display_values,
                                 dimension_hyperlink_templates):
        # Add the index to the row
        row = {}
        for key, value in index_values.items():
            if key is None:
                continue

            data = {RAW_VALUE: metric_value(value)}

            # Try to find a display value for the item. If this is a metric the raw value is replaced with the
            # display value because there is no raw value for a metric label
            display = getdeepattr(dimension_display_values, (key, value))
            if display is not None:
                data['display'] = display

            # If the dimension has a hyperlink template, then apply the template by formatting it with the dimension
            # values for this row. The values contained in `index_values` will always contain all of the required values
            # at this point, otherwise the hyperlink template will not be included.
            if key in dimension_hyperlink_templates:
                data['hyperlink'] = dimension_hyperlink_templates[key].format(
                    **index_values)

            row[key] = data

        return row
Exemplo n.º 2
0
    def transform_data_row_values(cls, series, item_map):
        # Add the values to the row
        row = {}
        for key, value in series.iteritems():
            key = wrap_list(key)
            value = metric_value(value)
            data = {RAW_VALUE: metric_value(value)}

            # Try to find a display value for the item
            item = item_map.get(key[0])
            display = metric_display(value, getattr(item, 'prefix', None),
                                     getattr(item, 'suffix', None),
                                     getattr(item, 'precision', None))

            if display is not None:
                data['display'] = display

            setdeepattr(row, key, data)

        return row
Exemplo n.º 3
0
    def _render_timeseries_data(group_df, metric_key):
        series = []
        for dimension_values, y in group_df[metric_key].iteritems():
            first_dimension_value = utils.wrap_list(dimension_values)[0]

            if pd.isnull(first_dimension_value):
                # Ignore totals on the x-axis.
                continue

            series.append((formats.date_as_millis(first_dimension_value),
                           formats.metric_value(y)))
        return series
Exemplo n.º 4
0
    def _render_category_data(group_df, metric_key):
        categories = list(group_df.index.levels[0]) \
            if isinstance(group_df.index, pd.MultiIndex) \
            else list(group_df.index)

        series = []
        for labels, y in group_df[metric_key].iteritems():
            label = labels[0] if isinstance(labels, tuple) else labels

            series.append({
                'x': categories.index(label),
                'y': formats.metric_value(y)
            })

        return series
Exemplo n.º 5
0
def _format_metric_cell(value, metric):
    """
    Renders a table cell in a metric column for non-pivoted tables.

    :param value:
        The raw value of the metric.

    :param metric:
        A reference to the slicer metric to access the display formatting.
    :return:
        A dict containing the keys value and display with the raw and display metric values.
    """
    raw_value = formats.metric_value(value)
    return {
        'value': raw_value,
        'display': formats.metric_display(raw_value,
                                          prefix=metric.prefix,
                                          suffix=metric.suffix,
                                          precision=metric.precision)
        if raw_value is not None
        else None
    }
Exemplo n.º 6
0
    def _render_pie_series(self, series, reference, data_frame, render_series_label):
        metric = series.metric
        name = reference_label(metric, reference)
        df_key = utils.format_metric_key(series.metric.key)

        data = []
        for dimension_values, y in data_frame[df_key].sort_values(ascending=False).iteritems():
            data.append({
                "name": render_series_label(dimension_values) if dimension_values else name,
                "y": formats.metric_value(y),
            })

        return {
            "name": name,
            "type": series.type,
            "data": data,
            'tooltip': {
                'pointFormat': '<span style="color:{point.color}">\u25CF</span> {series.name}: '
                               '<b>{point.y} ({point.percentage:.1f}%)</b><br/>',
                'valueDecimals': metric.precision,
                'valuePrefix': reference_prefix(metric, reference),
                'valueSuffix': reference_suffix(metric, reference),
            },
        }
Exemplo n.º 7
0
 def test_timestamp_data_point_is_returned_as_string_iso_no_time(self):
     # Needs to be converted to milliseconds
     result = formats.metric_value(pd.Timestamp(datetime(2000, 1, 1, 1)))
     self.assertEqual('2000-01-01T01:00:00', result)
Exemplo n.º 8
0
 def test_int64_data_point_is_returned_as_py_int(self):
     # Needs to be cast to python int
     result = formats.metric_value(np.int64(1))
     self.assertEqual(int(1), result)
Exemplo n.º 9
0
 def test_str_data_point_is_returned_unchanged(self):
     result = formats.metric_value(u'abc')
     self.assertEqual('abc', result)
Exemplo n.º 10
0
 def test_that_neg_inf_data_point_is_converted_to_none(self):
     # np.nan is converted to None
     result = formats.metric_value(-np.inf)
     self.assertIsNone(result)
Exemplo n.º 11
0
 def test_that_literal_strings_are_not_converted(self):
     for value in ['NAN', 'INF', 'nan', 'inf']:
         with self.subTest(value):
             result = formats.metric_value(value)
             self.assertEqual(result, value)