Exemplo n.º 1
0
def get_node_set(mesh, nodes_per_entity):
    """Get the :class:`node set <pyop2.Set>`.

    :arg mesh: The mesh to use.
    :arg nodes_per_entity: The number of function space nodes per
        topological entity.
    :returns: A :class:`pyop2.Set` for the function space nodes.
    """
    global_numbering = get_global_numbering(mesh, nodes_per_entity)
    # Use a DM to create the halo SFs
    dm = PETSc.DMShell().create(mesh.comm)
    dm.setPointSF(mesh._plex.getPointSF())
    dm.setDefaultSection(global_numbering)
    node_classes = tuple(numpy.dot(nodes_per_entity, mesh._entity_classes))
    node_set = op2.Set(node_classes, halo=halo_mod.Halo(dm), comm=mesh.comm)
    # Don't need it any more, explicitly destroy.
    dm.destroy()
    extruded = bool(mesh.layers)
    if extruded:
        node_set = op2.ExtrudedSet(node_set, layers=mesh.layers)

    assert global_numbering.getStorageSize() == node_set.total_size
    if not extruded and node_set.total_size >= (1 <<
                                                (IntType.itemsize * 8 - 4)):
        raise RuntimeError(
            "Problems with more than %d nodes per process unsupported",
            (1 << (IntType.itemsize * 8 - 4)))
    return node_set
Exemplo n.º 2
0
def get_node_set(mesh, key):
    """Get the :class:`node set <pyop2.Set>`.

    :arg mesh: The mesh to use.
    :arg key: a (nodes_per_entity, real_tensorproduct) tuple where
        nodes_per_entity is a tuple of the number of nodes per topological
        entity; real_tensorproduct is True if the function space is a
        degenerate fs x Real tensorproduct.
    :returns: A :class:`pyop2.Set` for the function space nodes.
    """
    nodes_per_entity, real_tensorproduct = key
    global_numbering = get_global_numbering(
        mesh, (nodes_per_entity, real_tensorproduct))
    node_classes = mesh.node_classes(nodes_per_entity,
                                     real_tensorproduct=real_tensorproduct)
    halo = halo_mod.Halo(mesh._topology_dm, global_numbering)
    node_set = op2.Set(node_classes, halo=halo, comm=mesh.comm)
    extruded = mesh.cell_set._extruded

    assert global_numbering.getStorageSize() == node_set.total_size
    if not extruded and node_set.total_size >= (1 <<
                                                (IntType.itemsize * 8 - 4)):
        raise RuntimeError(
            "Problems with more than %d nodes per process unsupported",
            (1 << (IntType.itemsize * 8 - 4)))
    return node_set
Exemplo n.º 3
0
def get_node_set(mesh, nodes_per_entity):
    """Get the :class:`node set <pyop2.Set>`.

    :arg mesh: The mesh to use.
    :arg nodes_per_entity: The number of function space nodes per
        topological entity.
    :returns: A :class:`pyop2.Set` for the function space nodes.
    """
    global_numbering = get_global_numbering(mesh, nodes_per_entity)
    node_classes = mesh.node_classes(nodes_per_entity)
    halo = halo_mod.Halo(mesh._plex, global_numbering)
    node_set = op2.Set(node_classes, halo=halo, comm=mesh.comm)
    extruded = mesh.cell_set._extruded
    if extruded:
        # FIXME! This is a LIE! But these sets should not be extruded
        # anyway, only the code gen in PyOP2 is busted.
        node_set = op2.ExtrudedSet(node_set, layers=2)

    assert global_numbering.getStorageSize() == node_set.total_size
    if not extruded and node_set.total_size >= (1 <<
                                                (IntType.itemsize * 8 - 4)):
        raise RuntimeError(
            "Problems with more than %d nodes per process unsupported",
            (1 << (IntType.itemsize * 8 - 4)))
    return node_set
Exemplo n.º 4
0
def get_node_set(mesh, nodes_per_entity):
    """Get the :class:`node set <pyop2.Set>`.

    :arg mesh: The mesh to use.
    :arg nodes_per_entity: The number of function space nodes per
        topological entity.
    :returns: A :class:`pyop2.Set` for the function space nodes.
    """
    global_numbering = get_global_numbering(mesh, nodes_per_entity)
    # Use a DM to create the halo SFs
    dm = PETSc.DMShell().create()
    dm.setPointSF(mesh._plex.getPointSF())
    dm.setDefaultSection(global_numbering)
    node_classes = tuple(numpy.dot(nodes_per_entity, mesh._entity_classes))
    node_set = op2.Set(node_classes, halo=halo_mod.Halo(dm))
    # Don't need it any more, explicitly destroy.
    dm.destroy()
    extruded = bool(mesh.layers)
    if extruded:
        node_set = op2.ExtrudedSet(node_set, layers=mesh.layers)

    assert global_numbering.getStorageSize() == node_set.total_size
    return node_set
Exemplo n.º 5
0
    def __init__(self, mesh, element, name=None, dim=1, rank=0):
        """
        :param mesh: :class:`Mesh` to build this space on
        :param element: :class:`ufl.FiniteElementBase` to build this space from
        :param name: user-defined name for this space
        :param dim: vector space dimension of a :class:`.VectorFunctionSpace`
        :param rank: rank of the space, not the value rank
        """

        self._ufl_element = element

        # Compute the FIAT version of the UFL element above
        self.fiat_element = fiat_utils.fiat_from_ufl_element(element)

        if isinstance(mesh, mesh_t.ExtrudedMesh):
            # Set up some extrusion-specific things
            # The bottom layer maps will come from element_dof_list
            # dof_count is the total number of dofs in the extruded mesh

            # Get the flattened version of the FIAT element
            self.flattened_element = fiat_utils.FlattenedElement(
                self.fiat_element)

            # Compute the number of DoFs per dimension on top/bottom and sides
            entity_dofs = self.fiat_element.entity_dofs()
            top_dim = mesh._plex.getDimension()
            self._xtr_hdofs = [
                len(entity_dofs[(d, 0)][0]) for d in range(top_dim + 1)
            ]
            self._xtr_vdofs = [
                len(entity_dofs[(d, 1)][0]) for d in range(top_dim + 1)
            ]

            # Compute the dofs per column
            self.dofs_per_column = eutils.compute_extruded_dofs(
                self.fiat_element, self.flattened_element.entity_dofs(),
                mesh._layers)

            # Compute the offset for the extrusion process
            self.offset = eutils.compute_offset(
                self.fiat_element.entity_dofs(),
                self.flattened_element.entity_dofs(),
                self.fiat_element.space_dimension())

            # Compute the top and bottom masks to identify boundary dofs
            #
            # Sorting the keys of the closure entity dofs, the whole cell
            # comes last [-1], before that the horizontal facet [-2], before
            # that vertical facets [-3]. We need the horizontal facets here.
            closure_dofs = self.fiat_element.entity_closure_dofs()
            b_mask = closure_dofs[sorted(closure_dofs.keys())[-2]][0]
            t_mask = closure_dofs[sorted(closure_dofs.keys())[-2]][1]
            self.bt_masks = (b_mask, t_mask)  # conversion to tuple

            self.extruded = True

            self._dofs_per_entity = self.dofs_per_column
        else:
            # If not extruded specific, set things to None/False, etc.
            self.offset = None
            self.bt_masks = None
            self.dofs_per_column = np.zeros(1, np.int32)
            self.extruded = False

            entity_dofs = self.fiat_element.entity_dofs()
            self._dofs_per_entity = [
                len(entity[0]) for d, entity in entity_dofs.iteritems()
            ]

        self.name = name
        self._dim = dim
        self._mesh = mesh
        self._index = None

        dm = PETSc.DMShell().create()
        dm.setAttr('__fs__', weakref.ref(self))
        dm.setPointSF(mesh._plex.getPointSF())
        # Create the PetscSection mapping topological entities to DoFs
        sec = mesh._plex.createSection([1],
                                       self._dofs_per_entity,
                                       perm=mesh._plex_renumbering)
        dm.setDefaultSection(sec)
        self._global_numbering = sec
        self._dm = dm
        self._ises = None
        self._halo = halo.Halo(dm)

        # Compute entity class offsets
        self.dof_classes = [0, 0, 0, 0]
        for d in range(mesh._plex.getDimension() + 1):
            ndofs = self._dofs_per_entity[d]
            for i in range(4):
                self.dof_classes[i] += ndofs * mesh._entity_classes[d, i]

        # Tell the DM about the layout of the global vector
        from firedrake.function import Function
        with Function(self).dat.vec_ro as v:
            self._dm.setGlobalVector(v.duplicate())

        self._node_count = self._global_numbering.getStorageSize()

        self.cell_node_list = mesh.create_cell_node_list(
            self._global_numbering, self.fiat_element)

        if mesh._plex.getStratumSize("interior_facets", 1) > 0:
            self.interior_facet_node_list = \
                dmplex.get_facet_nodes(mesh.interior_facets.facet_cell,
                                       self.cell_node_list)
        else:
            self.interior_facet_node_list = np.array([], dtype=np.int32)

        if mesh._plex.getStratumSize("exterior_facets", 1) > 0:
            self.exterior_facet_node_list = \
                dmplex.get_facet_nodes(mesh.exterior_facets.facet_cell,
                                       self.cell_node_list)
        else:
            self.exterior_facet_node_list = np.array([], dtype=np.int32)

        # Note: this is the function space rank. The value rank may be different.
        self.rank = rank

        # Empty map caches. This is a sui generis cache
        # implementation because of the need to support boundary
        # conditions.
        self._cell_node_map_cache = {}
        self._exterior_facet_map_cache = {}
        self._interior_facet_map_cache = {}
Exemplo n.º 6
0
    def __new__(cls, mesh, element, name=None, shape=()):
        """
        :param mesh: :class:`MeshTopology` to build this space on
        :param element: :class:`ufl.FiniteElementBase` to build this space from
        :param name: user-defined name for this space
        :param shape: shape of a :class:`.VectorFunctionSpace` or :class:`.TensorFunctionSpace`
        """

        assert mesh.ufl_cell() == element.cell()

        self = super(FunctionSpaceBase, cls).__new__(cls, mesh, element, name,
                                                     shape)
        if self._initialized:
            return self

        self._mesh = mesh
        self._ufl_element = element
        self.name = name
        self._shape = shape

        # Compute the FIAT version of the UFL element above
        self.fiat_element = fiat_utils.fiat_from_ufl_element(element)

        entity_dofs = self.fiat_element.entity_dofs()
        dofs_per_entity = mesh.make_dofs_per_plex_entity(entity_dofs)

        self.extruded = bool(mesh.layers)
        self.offset = mesh.make_offset(entity_dofs,
                                       self.fiat_element.space_dimension())

        if mesh.layers:
            # Compute the top and bottom masks to identify boundary dofs
            #
            # Sorting the keys of the closure entity dofs, the whole cell
            # comes last [-1], before that the horizontal facet [-2], before
            # that vertical facets [-3]. We need the horizontal facets here.
            closure_dofs = self.fiat_element.entity_closure_dofs()
            b_mask = closure_dofs[sorted(closure_dofs.keys())[-2]][0]
            t_mask = closure_dofs[sorted(closure_dofs.keys())[-2]][1]
            self.bt_masks = {}
            self.bt_masks["topological"] = (b_mask, t_mask
                                            )  # conversion to tuple
            # Geometric facet dofs
            facet_dofs = horiz_facet_support_dofs(self.fiat_element)
            self.bt_masks["geometric"] = (facet_dofs[0], facet_dofs[1])
        else:
            self.bt_masks = None

        dm = PETSc.DMShell().create()
        dm.setAttr('__fs__', weakref.ref(self))
        dm.setPointSF(mesh._plex.getPointSF())
        # Create the PetscSection mapping topological entities to DoFs
        sec = mesh._plex.createSection([1],
                                       dofs_per_entity,
                                       perm=mesh._plex_renumbering)
        dm.setDefaultSection(sec)
        self._global_numbering = sec
        self._dm = dm
        self._ises = None
        self._halo = halo.Halo(dm)

        # Compute entity class offsets
        self.dof_classes = [0, 0, 0, 0]
        for d in range(mesh._plex.getDimension() + 1):
            ndofs = dofs_per_entity[d]
            for i in range(4):
                self.dof_classes[i] += ndofs * mesh._entity_classes[d, i]

        # Tell the DM about the layout of the global vector
        with self.make_dat().vec_ro as v:
            self._dm.setGlobalVector(v.duplicate())

        self._node_count = self._global_numbering.getStorageSize()

        self.cell_node_list = mesh.make_cell_node_list(self._global_numbering,
                                                       entity_dofs)

        if mesh._plex.getStratumSize("interior_facets", 1) > 0:
            self.interior_facet_node_list = \
                dmplex.get_facet_nodes(mesh.interior_facets.facet_cell,
                                       self.cell_node_list)
        else:
            self.interior_facet_node_list = np.array([], dtype=np.int32)

        if mesh._plex.getStratumSize("exterior_facets", 1) > 0:
            self.exterior_facet_node_list = \
                dmplex.get_facet_nodes(mesh.exterior_facets.facet_cell,
                                       self.cell_node_list)
        else:
            self.exterior_facet_node_list = np.array([], dtype=np.int32)

        # Empty map caches. This is a sui generis cache
        # implementation because of the need to support boundary
        # conditions.
        self._cell_node_map_cache = {}
        self._exterior_facet_map_cache = {}
        self._interior_facet_map_cache = {}

        self._initialized = True
        return self