Exemplo n.º 1
0
def plot_matrix_hybrid(A, **kwargs):
    """Provides a plot of a hybrid-mixed matrix."""
    fig, ax = plt.subplots(1, 1)

    petsc_mat = A.M.handle

    total_size = petsc_mat.getSize()
    f0_size = A.M[0, 0].handle.getSize()
    f1_size = A.M[1, 1].handle.getSize()

    Mij = PETSc.Mat()
    petsc_mat.convert("aij", Mij)

    n, m = total_size
    Mnp = np.array(Mij.getValues(range(n), range(m)))
    Am = np.ma.masked_values(Mnp, 0, rtol=1e-13)

    my_cmap = plt.cm.magma
    my_cmap.set_bad(color="lightgray")

    # Plot the matrix
    plot = ax.matshow(Am, cmap=my_cmap, **kwargs)
    # plot = plt.spy(Am, **kwargs)

    # Remove axis ticks and values
    ax.tick_params(length=0)
    ax.set_xticklabels([])
    ax.set_yticklabels([])

    ax.axhline(y=f0_size[0] - 0.5, color="k")
    ax.axvline(x=f0_size[0] - 0.5, color="k")
    ax.axhline(y=f0_size[0] + f1_size[0] - 0.5, color="k")
    ax.axvline(x=f0_size[0] + f1_size[0] - 0.5, color="k")

    return plot
Exemplo n.º 2
0
 def create_injection(self, dmc, dmf):
     prefix = dmc.getOptionsPrefix()
     mat_type = PETSc.Options(prefix).getString(
         "mg_levels_transfer_mat_type", default="matfree")
     I = self.create_transfer(get_appctx(dmf), get_appctx(dmc), mat_type,
                              False, False)
     return PETSc.Mat().createTranspose(I)
Exemplo n.º 3
0
    def construct_kronecker_matrix(self, interp_1d):
        """
        Construct the tensorized interpolation matrix.

        Do this by computing the kron product of the rows of
        the 1d univariate interpolation matrices.
        In the future, this may be done matrix-free.
        """
        # this is awfully slow in 3D!!!!!!!!!!! (FW: it might not be anymore)

        IFW = PETSc.Mat().create(self.comm)
        IFW.setType(PETSc.Mat.Type.AIJ)

        comm = self.comm
        # owned part of global problem
        local_N = self.N // comm.size + int(comm.rank < (self.N % comm.size))
        (lsize, gsize) = interp_1d[0].getSizes()[0]
        IFW.setSizes(((lsize, gsize), (local_N, self.N)))
        IFW.setUp()
        for row in range(lsize):
            row = self.lg_map_fe.apply([row])[0]
            denserows = [A[row, :] for A in interp_1d]
            values = reduce(np.kron, denserows)
            columns = np.where(values != 0)[0].astype(np.int32)
            values = values[columns]
            IFW.setValues([row], columns, values)

        IFW.assemble()
        return IFW
Exemplo n.º 4
0
def plot_matrix(A, **kwargs):
    """Provides a plot of a matrix."""
    fig, ax = plt.subplots(1, 1)

    petsc_mat = A.M.handle

    size = petsc_mat.getSize()
    Mij = PETSc.Mat()
    petsc_mat.convert("aij", Mij)

    n, m = size
    Mnp = np.array(Mij.getValues(range(n), range(m)))
    Am = np.ma.masked_values(Mnp, 0, rtol=1e-13)

    my_cmap = plt.cm.magma
    my_cmap.set_bad(color="lightgray")

    # Plot the matrix
    plot = ax.matshow(Am, cmap=my_cmap, **kwargs)

    # Remove axis ticks and values
    ax.tick_params(length=0)
    ax.set_xticklabels([])
    ax.set_yticklabels([])

    return plot
Exemplo n.º 5
0
    def assemble(self):
        """
        Compute values of G and assemble the sparse matrix

        This method creates the underlying sparse covariance matrix based on the pre-computed entries,
        allocates memory, sets the values, and finalizes assembly. No inputs, no return value. If this
        method is called and the matrix has already been assembled, it will return with no effect.
        """

        if self.is_assembled:
            return

        G_dict, nnz = self._compute_G_vals()

        self.G = PETSc.Mat().create(comm=self.comm)
        self.G.setType('aij')
        self.G.setSizes(((self.nx_local, -1), (self.nx_local, -1)))
        self.G.setPreallocationNNZ(nnz)
        self.G.setFromOptions()
        self.G.setUp()

        for key, val in G_dict.items():
            self.G.setValues(np.array(key, dtype=PETSc.IntType), val[1],
                             val[0])

        self.G.assemble()

        self.is_assembled = True
Exemplo n.º 6
0
    def construct_full_interpolation_matrix(self, IFW):
        """
        Assemble interpolation matrix for vectorial tensorized spline space.
        """
        # this is THE MOST awfully slow in 3D!!!!!!!!!!!
        FullIFW = PETSc.Mat().create(self.comm)
        FullIFW.setType(PETSc.Mat.Type.AIJ)
        d = self.dim
        free_dims = list(set(range(self.dim)) - set(self.fixed_dims))
        dfree = len(free_dims)
        ((lsize, gsize), (lsize_spline, gsize_spline)) = IFW.getSizes()

        FullIFW.setSizes(((d * lsize, d * gsize),
                          (dfree * lsize_spline, dfree * gsize_spline)))
        # BIG TODO: figure out the sparsity pattern
        FullIFW.setUp()

        # this blows up the matrix to do the right thing
        # on vector fields. It's not just a block matrix,
        # but the values are interleaved as this is how
        # firedrake handles vector fields
        for row in range(lsize):
            row = self.lg_map_fe.apply([row])[0]
            (cols, vals) = IFW.getRow(row)
            for j, dim in enumerate(free_dims):
                FullIFW.setValues([d * row + dim],
                                  [dfree * col + j for col in cols],
                                  vals)
        FullIFW.assemble()
        return FullIFW
Exemplo n.º 7
0
    def createSubMatrix(self, mat, row_is, col_is, target=None):
        if target is not None:
            # Repeat call, just return the matrix, since we don't
            # actually assemble in here.
            target.assemble()
            return target

        # These are the sets of ISes of which the the row and column
        # space consist.
        row_ises = self._y.function_space().dof_dset.field_ises
        col_ises = self._x.function_space().dof_dset.field_ises

        row_inds = find_sub_block(row_is, row_ises)
        if row_is == col_is and row_ises == col_ises:
            col_inds = row_inds
        else:
            col_inds = find_sub_block(col_is, col_ises)

        splitter = ExtractSubBlock()
        asub = splitter.split(self.a,
                              argument_indices=(row_inds, col_inds))
        Wrow = asub.arguments()[0].function_space()
        Wcol = asub.arguments()[1].function_space()

        row_bcs = []
        col_bcs = []

        for bc in self.bcs:
            if isinstance(bc, DirichletBC):
                bc_temp = bc.reconstruct(field=row_inds, V=Wrow, g=bc.function_arg, sub_domain=bc.sub_domain, method=bc.method, use_split=True)
            elif isinstance(bc, EquationBCSplit):
                bc_temp = bc.reconstruct(field=row_inds, V=Wrow, row_field=row_inds, col_field=col_inds, use_split=True)
            if bc_temp is not None:
                row_bcs.append(bc_temp)

        if Wrow == Wcol and row_inds == col_inds and self.bcs == self.bcs_col:
            col_bcs = row_bcs
        else:
            for bc in self.bcs_col:
                if isinstance(bc, DirichletBC):
                    bc_temp = bc.reconstruct(field=col_inds, V=Wcol, g=bc.function_arg, sub_domain=bc.sub_domain, method=bc.method, use_split=True)
                elif isinstance(bc, EquationBCSplit):
                    bc_temp = bc.reconstruct(field=col_inds, V=Wcol, row_field=row_inds, col_field=col_inds, use_split=True)
                if bc_temp is not None:
                    col_bcs.append(bc_temp)

        submat_ctx = ImplicitMatrixContext(asub,
                                           row_bcs=row_bcs,
                                           col_bcs=col_bcs,
                                           fc_params=self.fc_params,
                                           appctx=self.appctx)
        submat_ctx.on_diag = self.on_diag and row_inds == col_inds
        submat = PETSc.Mat().create(comm=mat.comm)
        submat.setType("python")
        submat.setSizes((submat_ctx.row_sizes, submat_ctx.col_sizes),
                        bsize=submat_ctx.block_size)
        submat.setPythonContext(submat_ctx)
        submat.setUp()

        return submat
Exemplo n.º 8
0
def plot_matrix_mixed(a_form, bcs=[], **kwargs):
    """Provides a plot of a mixed matrix."""
    fig, ax = plt.subplots(1, 1)

    A = assemble(a_form, bcs=bcs, mat_type="aij")
    petsc_mat = A.M.handle

    total_size = petsc_mat.getSize()
    f0_size = A.M[0, 0].handle.getSize()
    Mij = PETSc.Mat()
    petsc_mat.convert("aij", Mij)

    n, m = total_size
    Mnp = np.array(Mij.getValues(range(n), range(m)))
    Am = np.ma.masked_values(Mnp, 0, rtol=1e-13)

    # Plot the matrix
    plot = ax.matshow(Am, cmap=my_cmap, **kwargs)

    # Remove axis ticks and values
    ax.tick_params(length=0)
    ax.set_xticklabels([])
    ax.set_yticklabels([])

    ax.axhline(y=f0_size[0] - 0.5, color="k")
    ax.axvline(x=f0_size[0] - 0.5, color="k")

    return plot
Exemplo n.º 9
0
def plot_matrix_hybrid_multiplier_spp(a_form, bcs=[], **kwargs):
    """Provides a plot of a condensed hybrid-mixed matrix for single scale problems."""
    fig, ax = plt.subplots(1, 1)

    _A = Tensor(a_form)
    A = _A.blocks
    S = A[2, 2] - A[2, :2] * A[:2, :2].inv * A[:2, 2]
    Smat = assemble(S, bcs=bcs)

    petsc_mat = Smat.M.handle
    total_size = petsc_mat.getSize()
    Mij = PETSc.Mat()
    petsc_mat.convert("aij", Mij)

    n, m = total_size
    Mnp = np.array(Mij.getValues(range(n), range(m)))
    Am = np.ma.masked_values(Mnp, 0, rtol=1e-13)

    # Plot the matrix
    plot = ax.matshow(Am, cmap=my_cmap, **kwargs)
    # Below there is the spy alternative
    # plot = plt.spy(Am, **kwargs)

    # Remove axis ticks and values
    ax.tick_params(length=0)
    ax.set_xticklabels([])
    ax.set_yticklabels([])

    return plot
Exemplo n.º 10
0
def create_interpolation(dmc, dmf):

    cctx = firedrake.dmhooks.get_appctx(dmc)
    fctx = firedrake.dmhooks.get_appctx(dmf)

    manager = firedrake.dmhooks.get_transfer_manager(dmf)

    V_c = cctx._problem.u.function_space()
    V_f = fctx._problem.u.function_space()

    row_size = V_f.dof_dset.layout_vec.getSizes()
    col_size = V_c.dof_dset.layout_vec.getSizes()

    cfn = firedrake.Function(V_c)
    ffn = firedrake.Function(V_f)
    cbcs = cctx._problem.bcs
    fbcs = fctx._problem.bcs

    ctx = Interpolation(cfn, ffn, manager, cbcs, fbcs)
    mat = PETSc.Mat().create(comm=dmc.comm)
    mat.setSizes((row_size, col_size))
    mat.setType(mat.Type.PYTHON)
    mat.setPythonContext(ctx)
    mat.setUp()
    return mat, None
Exemplo n.º 11
0
def test_ForcingCovariance_init(fs):
    "test init method of ForcingCovariance"

    # note: tests only handle case of a single process
    # need to think about testing more complicated cases

    # simple example in 1D

    sigma = np.log(1.)
    l = np.log(0.1)

    fc = ForcingCovariance(fs, sigma, l)

    n = Function(fs).vector().size()
    n_local = Function(fs).vector().local_size()

    M = PETSc.Mat().create()
    M.setSizes(((n_local, -1), (n_local, -1)))
    M.setFromOptions()
    M.setUp()
    start, end = M.getOwnershipRange()

    assert fc.nx == n
    assert fc.nx_local == n_local
    assert fc.function_space == fs
    assert_allclose(fc.sigma, sigma)
    assert_allclose(fc.l, l)
    assert_allclose(fc.cutoff, 1.e-3)
    assert_allclose(fc.regularization, 1.e-8)
    assert fc.local_startind == start
    assert fc.local_endind == end
    assert not fc.is_assembled
Exemplo n.º 12
0
    def createSubMatrix(self, mat, row_is, col_is, target=None):
        if target is not None:
            # Repeat call, just return the matrix, since we don't
            # actually assemble in here.
            target.assemble()
            return target
        from firedrake import DirichletBC

        # These are the sets of ISes of which the the row and column
        # space consist.
        row_ises = self._y.function_space().dof_dset.field_ises
        col_ises = self._x.function_space().dof_dset.field_ises

        row_inds = find_sub_block(row_is, row_ises)
        if row_is == col_is and row_ises == col_ises:
            col_inds = row_inds
        else:
            col_inds = find_sub_block(col_is, col_ises)

        asub = ExtractSubBlock().split(self.a,
                                       argument_indices=(row_inds, col_inds))
        Wrow = asub.arguments()[0].function_space()
        Wcol = asub.arguments()[1].function_space()

        row_bcs = []
        col_bcs = []

        for bc in self.row_bcs:
            for i, r in enumerate(row_inds):
                if bc.function_space().index == r:
                    row_bcs.append(DirichletBC(Wrow.split()[i],
                                               bc.function_arg,
                                               bc.sub_domain,
                                               method=bc.method))

        if Wrow == Wcol and row_inds == col_inds and self.row_bcs == self.col_bcs:
            col_bcs = row_bcs
        else:
            for bc in self.col_bcs:
                for i, c in enumerate(col_inds):
                    if bc.function_space().index == c:
                        col_bcs.append(DirichletBC(Wcol.split()[i],
                                                   bc.function_arg,
                                                   bc.sub_domain,
                                                   method=bc.method))
        submat_ctx = ImplicitMatrixContext(asub,
                                           row_bcs=row_bcs,
                                           col_bcs=col_bcs,
                                           fc_params=self.fc_params,
                                           appctx=self.appctx)
        submat_ctx.on_diag = self.on_diag and row_inds == col_inds
        submat = PETSc.Mat().create(comm=mat.comm)
        submat.setType("python")
        submat.setSizes((submat_ctx.row_sizes, submat_ctx.col_sizes),
                        bsize=submat_ctx.block_size)
        submat.setPythonContext(submat_ctx)
        submat.setUp()

        return submat
Exemplo n.º 13
0
def get_np_matrix(form, **kwargs):
    L = get_PETSC_matrix(form, **kwargs)

    size = L.getSize()
    Lij = PETSc.Mat()
    L.convert('aij', Lij)

    Lnp = np.array(Lij.getValues(range(size[0]), range(size[1])))
    return Lnp
Exemplo n.º 14
0
 def getNestSubMatrix(self, i, j):
     if i == j:
         s = self.standalones[i]
         sizes = (s.Vf.dof_dset.layout_vec.getSizes(),
                  s.Vc.dof_dset.layout_vec.getSizes())
         M_shll = PETSc.Mat().createPython(sizes, s, comm=s.Vf.mesh().comm)
         M_shll.setUp()
         return M_shll
     else:
         return None
Exemplo n.º 15
0
def prolongation_matrix_matfree(Vf, Vc, Vf_bcs, Vc_bcs):
    fele = Vf.ufl_element()
    if isinstance(fele, MixedElement) and not isinstance(fele, (VectorElement, TensorElement)):
        ctx = MixedInterpolationMatrix(Vf, Vc, Vf_bcs, Vc_bcs)
    else:
        ctx = StandaloneInterpolationMatrix(Vf, Vc, Vf_bcs, Vc_bcs)

    sizes = (Vc.dof_dset.layout_vec.getSizes(), Vf.dof_dset.layout_vec.getSizes())
    M_shll = PETSc.Mat().createPython(sizes, ctx)
    M_shll.setUp()

    return M_shll
def GetPETScBFBTApproximateToSchurInverse():

    Fass = assemble(lhs(F))
    Gass = assemble(inner(u, v) * dx)
    # bcin.apply(Fass)
    # bcnoslip.apply(Fass)
    # bcin.apply(Gass)
    # bcnoslip.apply(Gass)
    A = Fass.M[0,0].handle
    BT = Fass.M[0,1].handle
    B = Fass.M[1,0].handle
    D = Fass.M[1,1].handle
    VM = Gass.M[0, 0].handle
    # Adiag = A.getDiagonal()
    Adiag = VM.getRowSum()
    invAdiag = Adiag.duplicate()
    Adiag.copy(invAdiag)
    invAdiag.reciprocal()

    Einv = A.duplicate()
    Einv.setDiagonal(invAdiag)
    # Einv.convert(PETSc.Mat.Type.SEQAIJ)
    BEBT = B.matMult(Einv.matMult(BT))

    BEBT_ksp = PETSc.KSP().create()
    BEBT_ksp.setOperators(BEBT)
    opts = PETSc.Options()
    BEBT_ksp.setOptionsPrefix("bebt_")
    opts['bebt_ksp_type'] = 'richardson'
    opts['bebt_pc_type'] = 'hypre'
    opts['bebt_ksp_max_it'] = 1
    opts['bebt_ksp_atol'] = 1.0e-9
    opts['bebt_ksp_rtol'] = 1.0e-9
    BEBT_ksp.setUp()
    BEBT_ksp.setFromOptions()

    MIDDLE = B.matMult(Einv.matMult(A.matMult(Einv.matMult(BT)))) 
    MIDDLE.scale(-1)
    class SchurInvApprox(object):
        def mult(self, mat, x, y):
            y1 = y.duplicate()
            BEBT_ksp.solve(x, y1)
            y2 = y.duplicate()
            MIDDLE.mult(y1, y2)
            BEBT_ksp.solve(y2, y)

    schur = PETSc.Mat()
    schur.createPython(D.getSizes(), SchurInvApprox())
    schur.setUp()
    return schur
Exemplo n.º 17
0
    def create_transfer(cctx, fctx, mat_type, cbcs, fbcs):
        cV = cctx.J.arguments()[0].function_space()
        fV = fctx.J.arguments()[0].function_space()

        cbcs = cctx._problem.bcs if cbcs else []
        fbcs = fctx._problem.bcs if fbcs else []

        if mat_type == "matfree":
            I = prolongation_matrix_matfree(fV, cV, fbcs, cbcs)
        elif mat_type == "aij":
            I = PETSc.Mat().createTranspose(prolongation_matrix_aij(fV, cV, fbcs, cbcs))
        else:
            raise ValueError("Unknown matrix type")
        return I
def GetPETScInverseMassApproximateToSchurInverse():
    mass = assemble( p*q*dx).M[1,1].handle
    mass_diag = mass.createVecLeft()
    mass.getDiagonal(mass_diag)
    mass_diag.reciprocal()
    mass_diag.scale(-1)

    class InvMassSchurInvApprox(object):
        def mult(self, mat, x, y):
            y.pointwiseMult(mass_diag, x)

    schur = PETSc.Mat()
    schur.createPython(mass.getSizes(), InvMassSchurInvApprox())
    schur.setUp()
    return schur
Exemplo n.º 19
0
    def duplicate(self, mat, copy):

        if copy == 0:
            raise NotImplementedError("We do now know how to duplicate a matrix-free MAT when copy=0")
        newmat_ctx = ImplicitMatrixContext(self.a,
                                           row_bcs=self.bcs,
                                           col_bcs=self.bcs_col,
                                           fc_params=self.fc_params,
                                           appctx=self.appctx)
        newmat = PETSc.Mat().create(comm=mat.comm)
        newmat.setType("python")
        newmat.setSizes((newmat_ctx.row_sizes, newmat_ctx.col_sizes),
                        bsize=newmat_ctx.block_size)
        newmat.setPythonContext(newmat_ctx)
        newmat.setUp()
        return newmat
Exemplo n.º 20
0
    def create_interpolation(self, dmc, dmf):
        # This should be generalised to work for arbitrary function
        # spaces. Currently I think it only works for CG/DG on simplices.
        # I used the same code as firedrake.P1PC.
        cctx = get_appctx(dmc)
        fctx = get_appctx(dmf)

        cV = cctx.J.arguments()[0].function_space()
        fV = fctx.J.arguments()[0].function_space()

        cbcs = cctx._problem.bcs
        fbcs = fctx._problem.bcs

        I = prolongation_matrix(fV, cV, fbcs, cbcs)
        R = PETSc.Mat().createTranspose(I)
        return R, None
Exemplo n.º 21
0
    def __init__(self, function_space, coords):
        "create and assemble interpolation matrix"

        if not isinstance(function_space, WithGeometry):
            raise TypeError(
                "bad input type for function_space: must be a FunctionSpace")

        self.coords = np.copy(coords)
        self.function_space = function_space
        self.comm = function_space.comm

        self.n_data = coords.shape[0]
        assert (coords.shape[1] == self.function_space.mesh().cell_dimension()
                ), "shape of coordinates does not match mesh dimension"

        # allocate working vectors to handle parallel matrix operations and data transfer

        # dataspace_vector is a distributed PETSc vector in the data space

        self.dataspace_distrib = PETSc.Vec().create(comm=self.comm)
        self.dataspace_distrib.setSizes((-1, self.n_data))
        self.dataspace_distrib.setFromOptions()

        self.n_data_local = self.dataspace_distrib.getSizes()[0]

        # all data computations are done on root process, so create gather method to
        # facilitate this data transfer

        self.petsc_scatter, self.dataspace_gathered = PETSc.Scatter.toZero(
            self.dataspace_distrib)

        self.meshspace_vector = Function(self.function_space).vector()

        self.n_mesh_local = self.meshspace_vector.local_size()
        self.n_mesh = self.meshspace_vector.size()

        nnz = len(self.function_space.cell_node_list[0])

        self.interp = PETSc.Mat().create(comm=self.comm)
        self.interp.setSizes(
            ((self.n_mesh_local, -1), (self.n_data_local, -1)))
        self.interp.setPreallocationNNZ(nnz)
        self.interp.setFromOptions()
        self.interp.setUp()

        self.is_assembled = False
Exemplo n.º 22
0
    def construct_full_interpolation_matrix(self, IFW):
        """
        Assemble interpolation matrix for vectorial tensorized spline space.
        """
        # this is one of the two bottlenecks that slow down initiating Bsplines
        FullIFW = PETSc.Mat().create(self.comm)
        FullIFW.setType(PETSc.Mat.Type.AIJ)

        # set proper matrix sizes
        d = self.dim
        free_dims = list(set(range(self.dim)) - set(self.fixed_dims))
        dfree = len(free_dims)
        ((lsize, gsize), (lsize_spline, gsize_spline)) = IFW.getSizes()
        FullIFW.setSizes(((d * lsize, d * gsize), (dfree * lsize_spline,
                                                   dfree * gsize_spline)))

        # (over)estimate sparsity pattern using row with most nonzeros
        # possible memory improvement: allocate precise sparsity pattern
        # row by row (but this needs nnzdiagonal and nnzoffidagonal;
        # not straightforward to do)
        global_rows = self.lg_map_fe.apply([range(lsize)])
        for ii, row in enumerate(range(lsize)):
            row = global_rows[row]
            self.FullIFWnnz = max(self.FullIFWnnz, len(IFW.getRow(row)[1]))
        FullIFW.setPreallocationNNZ(self.FullIFWnnz)

        # preallocate matrix
        FullIFW.setUp()

        # fill matrix by blowing up entries from IFW to do the right thing
        # on vector fields (it's not just a block matrix: values are
        # interleaved as this is how firedrake handles vector fields)
        innerloop_idx = [[i, free_dims[i]] for i in range(dfree)]
        for row in range(lsize):  # for every FE dof
            row = self.lg_map_fe.apply([row])[0]
            # extract value of all tensorize Bsplines at this dof
            (cols, vals) = IFW.getRow(row)
            expandedcols = dfree * cols
            for j, dim in innerloop_idx:
                FullIFW.setValues(
                    [d * row + dim],  # global row
                    expandedcols + j,  # global column
                    vals)

        FullIFW.assemble()
        return FullIFW
Exemplo n.º 23
0
def solve(ctx, state):
    out_file = File(solution_out) if solution_out else None

    mass = state["mass"]
    hats = state["hats"]

    u = ctx[2]["u"]
    u0 = ctx[2]["u0"]
    solver = ctx[1]

    from firedrake.petsc import PETSc
    ksp_hats = PETSc.KSP()
    ksp_hats.create()
    ksp_hats.setOperators(hats)
    opts = PETSc.Options()

    opts['ksp_type'] = inner_ksp
    opts['ksp_max_it'] = max_iterations
    opts['pc_type'] = 'hypre'
    ksp_hats.setFromOptions()

    class SchurInv(object):
        def mult(self, mat, x, y):
            tmp1 = y.duplicate()
            tmp2 = y.duplicate()
            ksp_hats.solve(x, tmp1)
            mass.mult(tmp1, tmp2)
            ksp_hats.solve(tmp2, y)

    pc_schur = PETSc.Mat()
    pc_schur.createPython(mass.getSizes(), SchurInv())
    pc_schur.setUp()
    pc = solver.snes.ksp.pc
    pc.setFieldSplitSchurPreType(PETSc.PC.SchurPreType.USER, pc_schur)

    for step in range(steps):
        casper.invoke_task(ctx, "assign", state)
        solver.solve()
        if out_file is not None:
            out_file.write(u.split()[0], time=step)
        if compute_norms:
            nu = norm(u)
            if comm.rank == 0:
                print(step, 'L2(u):', nu)
Exemplo n.º 24
0
    def __init__(self, a, bcs, *args, **kwargs):
        # sets self._a and self._bcs
        super(ImplicitMatrix, self).__init__(a, bcs)

        appctx = kwargs.get("appctx", {})

        from firedrake.matrix_free.operators import ImplicitMatrixContext
        ctx = ImplicitMatrixContext(a,
                                    row_bcs=self.bcs,
                                    col_bcs=self.bcs,
                                    fc_params=kwargs["fc_params"],
                                    appctx=appctx)
        self.petscmat = PETSc.Mat().create(comm=self.comm)
        self.petscmat.setType("python")
        self.petscmat.setSizes((ctx.row_sizes, ctx.col_sizes),
                               bsize=ctx.block_size)
        self.petscmat.setPythonContext(ctx)
        self.petscmat.setUp()
        self.petscmat.assemble()
Exemplo n.º 25
0
    def create_interpolation(self, dmc, dmf):
        cctx = get_appctx(dmc)
        fctx = get_appctx(dmf)

        cV = cctx.J.arguments()[0].function_space()
        fV = fctx.J.arguments()[0].function_space()

        cbcs = cctx._problem.bcs
        fbcs = fctx._problem.bcs

        prefix = dmc.getOptionsPrefix()
        mattype = PETSc.Options(prefix).getString("mg_levels_transfer_mat_type", default="matfree")

        if mattype == "matfree":
            I = prolongation_matrix_matfree(fV, cV, fbcs, cbcs)
        elif mattype == "aij":
            I = prolongation_matrix_aij(fV, cV, fbcs, cbcs)
        else:
            raise ValueError("Unknown matrix type")

        R = PETSc.Mat().createTranspose(I)
        return R, None
Exemplo n.º 26
0
def create_injection(dmc, dmf):
    _, clvl = utils.get_level(dmc)
    _, flvl = utils.get_level(dmf)

    cctx = dmc.getAppCtx()

    V_c = dmc.getAttr("__fs__")()
    V_f = dmf.getAttr("__fs__")()

    nrow = sum(x.dof_dset.size * x.dof_dset.cdim for x in V_f)
    ncol = sum(x.dof_dset.size * x.dof_dset.cdim for x in V_c)

    cfn = firedrake.Function(V_c)
    ffn = firedrake.Function(V_f)
    cbcs = cctx._problems[clvl].bcs

    class Injection(object):
        def __init__(self, cfn, ffn, cbcs=None):
            self.cfn = cfn
            self.ffn = ffn
            self.cbcs = cbcs or []

        def multTranspose(self, mat, x, y):
            with self.ffn.dat.vec as v:
                x.copy(v)
            firedrake.inject(self.ffn, self.cfn)
            for bc in self.cbcs:
                bc.apply(self.cfn)
            with self.cfn.dat.vec_ro as v:
                v.copy(y)

    ctx = Injection(cfn, ffn, cbcs)
    mat = PETSc.Mat().create()
    mat.setSizes(((nrow, None), (ncol, None)))
    mat.setType(mat.Type.PYTHON)
    mat.setPythonContext(ctx)
    mat.setUp()
    return mat
Exemplo n.º 27
0
    def construct_kronecker_matrix(self, interp_1d):
        """
        Construct the tensorized interpolation matrix.

        Do this by computing the kron product of the rows of
        the 1d univariate interpolation matrices.
        In the future, this may be done matrix-free.
        """
        # this is one of the two bottlenecks that slow down initiating Bsplines
        IFW = PETSc.Mat().create(self.comm)
        IFW.setType(PETSc.Mat.Type.AIJ)

        comm = self.comm
        # owned part of global problem
        local_N = self.N // comm.size + int(comm.rank < (self.N % comm.size))
        (lsize, gsize) = interp_1d[0].getSizes()[0]
        IFW.setSizes(((lsize, gsize), (local_N, self.N)))

        # guess sparsity pattern from interp_1d[0]
        for row in range(lsize):
            row = self.lg_map_fe.apply([row])[0]
            nnz_ = len(interp_1d[0].getRow(row)[0])  # lenght of nnz-array
            self.IFWnnz = max(self.IFWnnz, nnz_**self.dim)
        IFW.setPreallocationNNZ(self.IFWnnz)
        IFW.setUp()

        for row in range(lsize):
            row = self.lg_map_fe.apply([row])[0]
            M = [[A.getRow(row)[0],
                  A.getRow(row)[1],
                  A.getSize()[1]] for A in interp_1d]
            M = reduce(self.vectorkron, M)
            columns, values, lenght = M
            IFW.setValues([row], columns, values)

        IFW.assemble()
        return IFW
Exemplo n.º 28
0
def nonlocal_integral_eq(
    mesh,
    scatterer_bdy_id,
    outer_bdy_id,
    wave_number,
    options_prefix=None,
    solver_parameters=None,
    fspace=None,
    vfspace=None,
    true_sol_grad_expr=None,
    actx=None,
    dgfspace=None,
    dgvfspace=None,
    meshmode_src_connection=None,
    qbx_kwargs=None,
):
    r"""
        see run_method for descriptions of unlisted args

        args:

        gamma and beta are used to precondition
        with the following equation:

        \Delta u - \kappa^2 \gamma u = 0
        (\partial_n - i\kappa\beta) u |_\Sigma = 0
    """
    # make sure we get outer bdy id as tuple in case it consists of multiple ids
    if isinstance(outer_bdy_id, int):
        outer_bdy_id = [outer_bdy_id]
    outer_bdy_id = tuple(outer_bdy_id)
    # away from the excluded region, but firedrake and meshmode point
    # into
    pyt_inner_normal_sign = -1

    ambient_dim = mesh.geometric_dimension()

    # {{{ Build src and tgt

    # build connection meshmode near src boundary -> src boundary inside meshmode
    from meshmode.discretization.poly_element import \
        InterpolatoryQuadratureSimplexGroupFactory
    from meshmode.discretization.connection import make_face_restriction
    factory = InterpolatoryQuadratureSimplexGroupFactory(
        dgfspace.finat_element.degree)
    src_bdy_connection = make_face_restriction(actx,
                                               meshmode_src_connection.discr,
                                               factory, scatterer_bdy_id)
    # source is a qbx layer potential
    from pytential.qbx import QBXLayerPotentialSource
    disable_refinement = (fspace.mesh().geometric_dimension() == 3)
    qbx = QBXLayerPotentialSource(src_bdy_connection.to_discr,
                                  **qbx_kwargs,
                                  _disable_refinement=disable_refinement)

    # get target indices and point-set
    target_indices, target = get_target_points_and_indices(
        fspace, outer_bdy_id)

    # }}}

    # build the operations
    from pytential import bind, sym
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * sym.grad(
        ambient_dim,
        sym.D(HelmholtzKernel(ambient_dim),
              sym.var("u"),
              k=sym.var("k"),
              qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
    """
    op = pyt_inner_normal_sign * 1j * sym.var("k") * (sym.D(
        HelmholtzKernel(ambient_dim),
        sym.var("u"),
        k=sym.var("k"),
        qbx_forced_limit=None))

    # bind the operations
    pyt_grad_op = bind((qbx, target), grad_op)
    pyt_op = bind((qbx, target), op)

    # }}}

    class MatrixFreeB(object):
        def __init__(self, A, pyt_grad_op, pyt_op, actx, kappa):
            """
            :arg kappa: The wave number
            """

            self.actx = actx
            self.k = kappa
            self.pyt_op = pyt_op
            self.pyt_grad_op = pyt_grad_op
            self.A = A
            self.meshmode_src_connection = meshmode_src_connection

            # {{{ Create some functions needed for multing
            self.x_fntn = Function(fspace)

            # CG
            self.potential_int = Function(fspace)
            self.potential_int.dat.data[:] = 0.0
            self.grad_potential_int = Function(vfspace)
            self.grad_potential_int.dat.data[:] = 0.0
            self.pyt_result = Function(fspace)

            self.n = FacetNormal(mesh)
            self.v = TestFunction(fspace)

            # some meshmode ones
            self.x_mm_fntn = self.meshmode_src_connection.discr.empty(
                self.actx, dtype='c')

            # }}}

        def mult(self, mat, x, y):
            # Copy function data into the fivredrake function
            self.x_fntn.dat.data[:] = x[:]
            # Transfer the function to meshmode
            self.meshmode_src_connection.from_firedrake(project(
                self.x_fntn, dgfspace),
                                                        out=self.x_mm_fntn)
            # Restrict to boundary
            x_mm_fntn_on_bdy = src_bdy_connection(self.x_mm_fntn)

            # Apply the operation
            potential_int_mm = self.pyt_op(self.actx,
                                           u=x_mm_fntn_on_bdy,
                                           k=self.k)
            grad_potential_int_mm = self.pyt_grad_op(self.actx,
                                                     u=x_mm_fntn_on_bdy,
                                                     k=self.k)
            # Store in firedrake
            self.potential_int.dat.data[target_indices] = potential_int_mm.get(
            )
            for dim in range(grad_potential_int_mm.shape[0]):
                self.grad_potential_int.dat.data[
                    target_indices, dim] = grad_potential_int_mm[dim].get()

            # Integrate the potential
            r"""
            Compute the inner products using firedrake. Note this
            will be subtracted later, hence appears off by a sign.

            .. math::

                \langle
                    n(x) \cdot \nabla(
                        \int_\Gamma(
                            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                        )d\gamma(y)
                    ), v
                \rangle_\Sigma
                - \langle
                    i \kappa \cdot
                    \int_\Gamma(
                        u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                    )d\gamma(y), v
                \rangle_\Sigma
            """
            self.pyt_result = assemble(
                inner(inner(self.grad_potential_int, self.n), self.v) *
                ds(outer_bdy_id) -
                inner(self.potential_int, self.v) * ds(outer_bdy_id))

            # y <- Ax - evaluated potential
            self.A.mult(x, y)
            with self.pyt_result.dat.vec_ro as ep:
                y.axpy(-1, ep)

    # {{{ Compute normal helmholtz operator
    u = TrialFunction(fspace)
    v = TestFunction(fspace)
    r"""
    .. math::

        \langle
            \nabla u, \nabla v
        \rangle
        - \kappa^2 \cdot \langle
            u, v
        \rangle
        - i \kappa \langle
            u, v
        \rangle_\Sigma
    """
    a = inner(grad(u), grad(v)) * dx \
        - Constant(wave_number**2) * inner(u, v) * dx \
        - Constant(1j * wave_number) * inner(u, v) * ds(outer_bdy_id)

    # get the concrete matrix from a general bilinear form
    A = assemble(a).M.handle
    # }}}

    # {{{ Setup Python matrix
    B = PETSc.Mat().create()

    # build matrix context
    Bctx = MatrixFreeB(A, pyt_grad_op, pyt_op, actx, wave_number)

    # set up B as same size as A
    B.setSizes(*A.getSizes())

    B.setType(B.Type.PYTHON)
    B.setPythonContext(Bctx)
    B.setUp()
    # }}}

    # {{{ Create rhs

    # Remember f is \partial_n(true_sol)|_\Gamma
    # so we just need to compute \int_\Gamma\partial_n(true_sol) H(x-y)

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * \
        sym.grad(ambient_dim, sym.S(HelmholtzKernel(ambient_dim),
                                    sym.n_dot(sigma),
                                    k=sym.var("k"), qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            f(y) H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
        )
    """
    op = 1j * sym.var("k") * pyt_inner_normal_sign * \
        sym.S(HelmholtzKernel(ambient_dim),
              sym.n_dot(sigma),
              k=sym.var("k"),
              qbx_forced_limit=None)

    rhs_grad_op = bind((qbx, target), grad_op)
    rhs_op = bind((qbx, target), op)

    # Transfer to meshmode
    metadata = {'quadrature_degree': 2 * fspace.ufl_element().degree()}
    dg_true_sol_grad = project(true_sol_grad_expr,
                               dgvfspace,
                               form_compiler_parameters=metadata)
    true_sol_grad_mm = meshmode_src_connection.from_firedrake(dg_true_sol_grad,
                                                              actx=actx)
    true_sol_grad_mm = src_bdy_connection(true_sol_grad_mm)
    # Apply the operations
    f_grad_convoluted_mm = rhs_grad_op(actx,
                                       sigma=true_sol_grad_mm,
                                       k=wave_number)
    f_convoluted_mm = rhs_op(actx, sigma=true_sol_grad_mm, k=wave_number)
    # Transfer function back to firedrake
    f_grad_convoluted = Function(vfspace)
    f_convoluted = Function(fspace)
    f_grad_convoluted.dat.data[:] = 0.0
    f_convoluted.dat.data[:] = 0.0

    for dim in range(f_grad_convoluted_mm.shape[0]):
        f_grad_convoluted.dat.data[target_indices,
                                   dim] = f_grad_convoluted_mm[dim].get()
    f_convoluted.dat.data[target_indices] = f_convoluted_mm.get()
    r"""
        \langle
            f, v
        \rangle_\Gamma
        + \langle
            i \kappa \cdot \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y), v
        \rangle_\Sigma
        - \langle
            n(x) \cdot \nabla(
                \int_\Gamma(
                    f(y) H_0^{(1)}(\kappa |x - y|)
                )d\gamma(y)
            ), v
        \rangle_\Sigma
    """
    rhs_form = inner(inner(true_sol_grad_expr, FacetNormal(mesh)),
                     v) * ds(scatterer_bdy_id, metadata=metadata) \
        + inner(f_convoluted, v) * ds(outer_bdy_id) \
        - inner(inner(f_grad_convoluted, FacetNormal(mesh)),
                v) * ds(outer_bdy_id)

    rhs = assemble(rhs_form)

    # {{{ set up a solver:
    solution = Function(fspace, name="Computed Solution")

    #       {{{ Used for preconditioning
    if 'gamma' in solver_parameters or 'beta' in solver_parameters:
        gamma = complex(solver_parameters.pop('gamma', 1.0))

        import cmath
        beta = complex(solver_parameters.pop('beta', cmath.sqrt(gamma)))

        p = inner(grad(u), grad(v)) * dx \
            - Constant(wave_number**2 * gamma) * inner(u, v) * dx \
            - Constant(1j * wave_number * beta) * inner(u, v) * ds(outer_bdy_id)
        P = assemble(p).M.handle

    else:
        P = A
    #       }}}

    # Set up options to contain solver parameters:
    ksp = PETSc.KSP().create()
    if solver_parameters['pc_type'] == 'pyamg':
        del solver_parameters['pc_type']  # We are using the AMG preconditioner

        pyamg_tol = solver_parameters.get('pyamg_tol', None)
        if pyamg_tol is not None:
            pyamg_tol = float(pyamg_tol)
        pyamg_maxiter = solver_parameters.get('pyamg_maxiter', None)
        if pyamg_maxiter is not None:
            pyamg_maxiter = int(pyamg_maxiter)
        ksp.setOperators(B)
        ksp.setUp()
        pc = ksp.pc
        pc.setType(pc.Type.PYTHON)
        pc.setPythonContext(
            AMGTransmissionPreconditioner(wave_number,
                                          fspace,
                                          A,
                                          tol=pyamg_tol,
                                          maxiter=pyamg_maxiter,
                                          use_plane_waves=True))
    # Otherwise use regular preconditioner
    else:
        ksp.setOperators(B, P)

    options_manager = OptionsManager(solver_parameters, options_prefix)
    options_manager.set_from_options(ksp)

    import petsc4py.PETSc
    petsc4py.PETSc.Sys.popErrorHandler()
    with rhs.dat.vec_ro as b:
        with solution.dat.vec as x:
            ksp.solve(b, x)
    # }}}

    return ksp, solution
Exemplo n.º 29
0
def assemble_mixed_mass_matrix(V_A, V_B):
    """
    Construct the mixed mass matrix of two function spaces,
    using the TrialFunction from V_A and the TestFunction
    from V_B.
    """

    if len(V_A) > 1 or len(V_B) > 1:
        raise NotImplementedError(
            "Sorry, only implemented for non-mixed spaces")

    if V_A.ufl_element().mapping() != "identity" or V_B.ufl_element().mapping(
    ) != "identity":
        msg = """
Sorry, only implemented for affine maps for now. To do non-affine, we'd need to
import much more of the assembly engine of UFL/TSFC/etc to do the assembly on
each supermesh cell.
"""
        raise NotImplementedError(msg)

    mesh_A = V_A.mesh()
    mesh_B = V_B.mesh()

    dim = mesh_A.geometric_dimension()
    assert dim == mesh_B.geometric_dimension()
    assert dim == mesh_A.topological_dimension()
    assert dim == mesh_B.topological_dimension()

    (mh_A, level_A) = get_level(mesh_A)
    (mh_B, level_B) = get_level(mesh_B)

    if mesh_A is mesh_B:

        def likely(cell_A):
            return [cell_A]
    else:
        if (mh_A is None or mh_B is None) or (mh_A is not mh_B):

            # No mesh hierarchy structure, call libsupermesh for
            # intersection finding
            intersections = intersection_finder(mesh_A, mesh_B)
            likely = intersections.__getitem__
        else:
            # We do have a mesh hierarchy, use it

            if abs(level_A - level_B) > 1:
                raise NotImplementedError(
                    "Only works for transferring between adjacent levels for now."
                )

            # What are the cells of B that (probably) intersect with a given cell in A?
            if level_A > level_B:
                cell_map = mh_A.fine_to_coarse_cells[level_A]

                def likely(cell_A):
                    return cell_map[cell_A]

            elif level_A < level_B:
                cell_map = mh_A.coarse_to_fine_cells[level_A]

                def likely(cell_A):
                    return cell_map[cell_A]

    assert V_A.value_size == V_B.value_size
    orig_value_size = V_A.value_size
    if V_A.value_size > 1:
        V_A = firedrake.FunctionSpace(mesh_A,
                                      V_A.ufl_element().sub_elements()[0])
    if V_B.value_size > 1:
        V_B = firedrake.FunctionSpace(mesh_B,
                                      V_B.ufl_element().sub_elements()[0])

    assert V_A.value_size == 1
    assert V_B.value_size == 1

    preallocator = PETSc.Mat().create(comm=mesh_A.comm)
    preallocator.setType(PETSc.Mat.Type.PREALLOCATOR)

    rset = V_B.dof_dset
    cset = V_A.dof_dset

    nrows = rset.layout_vec.getSizes()
    ncols = cset.layout_vec.getSizes()

    preallocator.setLGMap(rmap=rset.scalar_lgmap, cmap=cset.scalar_lgmap)
    preallocator.setSizes(size=(nrows, ncols), bsize=1)
    preallocator.setUp()

    zeros = numpy.zeros((V_B.cell_node_map().arity, V_A.cell_node_map().arity),
                        dtype=ScalarType)
    for cell_A, dofs_A in enumerate(V_A.cell_node_map().values):
        for cell_B in likely(cell_A):
            dofs_B = V_B.cell_node_map().values_with_halo[cell_B, :]
            preallocator.setValuesLocal(dofs_B, dofs_A, zeros)
    preallocator.assemble()

    dnnz, onnz = get_preallocation(preallocator, nrows[0])

    # Unroll from block to AIJ
    dnnz = dnnz * cset.cdim
    dnnz = numpy.repeat(dnnz, rset.cdim)
    onnz = onnz * cset.cdim
    onnz = numpy.repeat(onnz, cset.cdim)
    preallocator.destroy()

    assert V_A.value_size == V_B.value_size
    rdim = V_B.dof_dset.cdim
    cdim = V_A.dof_dset.cdim

    #
    # Preallocate M_AB.
    #
    mat = PETSc.Mat().create(comm=mesh_A.comm)
    mat.setType(PETSc.Mat.Type.AIJ)
    rsizes = tuple(n * rdim for n in nrows)
    csizes = tuple(c * cdim for c in ncols)
    mat.setSizes(size=(rsizes, csizes), bsize=(rdim, cdim))
    mat.setPreallocationNNZ((dnnz, onnz))
    mat.setLGMap(rmap=rset.lgmap, cmap=cset.lgmap)
    # TODO: Boundary conditions not handled.
    mat.setOption(mat.Option.IGNORE_OFF_PROC_ENTRIES, False)
    mat.setOption(mat.Option.NEW_NONZERO_ALLOCATION_ERR, True)
    mat.setOption(mat.Option.KEEP_NONZERO_PATTERN, True)
    mat.setOption(mat.Option.UNUSED_NONZERO_LOCATION_ERR, False)
    mat.setOption(mat.Option.IGNORE_ZERO_ENTRIES, True)
    mat.setUp()

    evaluate_kernel_A = compile_element(ufl.Coefficient(V_A),
                                        name="evaluate_kernel_A")
    evaluate_kernel_B = compile_element(ufl.Coefficient(V_B),
                                        name="evaluate_kernel_B")

    # We only need one of these since we assume that the two meshes both have CG1 coordinates
    to_reference_kernel = to_reference_coordinates(
        mesh_A.coordinates.ufl_element())

    if dim == 2:
        reference_mesh = UnitTriangleMesh(comm=COMM_SELF)
    else:
        reference_mesh = UnitTetrahedronMesh(comm=COMM_SELF)
    evaluate_kernel_S = compile_element(ufl.Coefficient(
        reference_mesh.coordinates.function_space()),
                                        name="evaluate_kernel_S")

    V_S_A = FunctionSpace(reference_mesh, V_A.ufl_element())
    V_S_B = FunctionSpace(reference_mesh, V_B.ufl_element())
    M_SS = assemble(inner(TrialFunction(V_S_A), TestFunction(V_S_B)) * dx)
    M_SS = M_SS.M.handle[:, :]
    node_locations_A = utils.physical_node_locations(
        V_S_A).dat.data_ro_with_halos
    node_locations_B = utils.physical_node_locations(
        V_S_B).dat.data_ro_with_halos
    num_nodes_A = node_locations_A.shape[0]
    num_nodes_B = node_locations_B.shape[0]

    to_reference_kernel = to_reference_coordinates(
        mesh_A.coordinates.ufl_element())

    supermesh_kernel_str = """
    #include "libsupermesh-c.h"
    #include <petsc.h>
    %(to_reference)s
    %(evaluate_S)s
    %(evaluate_A)s
    %(evaluate_B)s
#define complex_mode %(complex_mode)s

    #define PrintInfo(...) do { if (PetscLogPrintInfo) printf(__VA_ARGS__); } while (0)
    static void print_array(PetscScalar *arr, int d)
    {
        for(int j=0; j<d; j++)
            PrintInfo(stderr, "%%+.2f ", arr[j]);
    }
    static void print_coordinates(PetscScalar *simplex, int d)
    {
        for(int i=0; i<d+1; i++)
        {
            PrintInfo("\t");
            print_array(&simplex[d*i], d);
            PrintInfo("\\n");
        }
    }
#if complex_mode
    static void seperate_real_and_imag(PetscScalar *simplex, double *real_simplex, double *imag_simplex, int d)
    {
        for(int i=0; i<d+1; i++)
        {
            for(int j=0; j<d; j++)
            {
                real_simplex[d*i+j] = creal(simplex[d*i+j]);
                imag_simplex[d*i+j] = cimag(simplex[d*i+j]);
            }
        }
    }
    static void merge_back_to_simplex(PetscScalar* simplex, double* real_simplex, double* imag_simplex, int d)
    {
        print_coordinates(simplex,d);
        for(int i=0; i<d+1; i++)
        {
            for(int j=0; j<d; j++)
            {
                simplex[d*i+j] = real_simplex[d*i+j]+imag_simplex[d*i+j]*_Complex_I;
            }
        }
    }
#endif
    int supermesh_kernel(PetscScalar* simplex_A, PetscScalar* simplex_B, PetscScalar* simplices_C,  PetscScalar* nodes_A,  PetscScalar* nodes_B,  PetscScalar* M_SS, PetscScalar* outptr, int num_ele)
    {
#define d %(dim)s
#define num_nodes_A %(num_nodes_A)s
#define num_nodes_B %(num_nodes_B)s

        double simplex_ref_measure;
        PrintInfo("simplex_A coordinates\\n");
        print_coordinates(simplex_A, d);
        PrintInfo("simplex_B coordinates\\n");
        print_coordinates(simplex_B, d);
        int num_elements = num_ele;

        if (d == 2) simplex_ref_measure = 0.5;
        else if (d == 3) simplex_ref_measure = 1.0/6;

        PetscScalar R_AS[num_nodes_A][num_nodes_A];
        PetscScalar R_BS[num_nodes_B][num_nodes_B];
        PetscScalar coeffs_A[%(num_nodes_A)s] = {0.};
        PetscScalar coeffs_B[%(num_nodes_B)s] = {0.};

        PetscScalar reference_nodes_A[num_nodes_A][d];
        PetscScalar reference_nodes_B[num_nodes_B][d];

#if complex_mode
        double real_simplex_A[d*(d+1)];
        double imag_simplex_A[d*(d+1)];
        seperate_real_and_imag(simplex_A, real_simplex_A, imag_simplex_A, d);
        double real_simplex_B[d*(d+1)];
        double imag_simplex_B[d*(d+1)];
        seperate_real_and_imag(simplex_B, real_simplex_B, imag_simplex_B, d);

        double real_simplices_C[num_elements*d*(d+1)];
        double imag_simplices_C[num_elements*d*(d+1)];
        for (int ii=0; ii<num_elements*d*(d+1); ++ii) imag_simplices_C[ii] = 0.;

        %(libsupermesh_intersect_simplices)s(real_simplex_A, real_simplex_B, real_simplices_C, &num_elements);

        merge_back_to_simplex(simplex_A, real_simplex_A, imag_simplex_A, d);
        merge_back_to_simplex(simplex_B, real_simplex_B, imag_simplex_B, d);
        for(int s=0; s<num_elements; s++)
        {
            PetscScalar* simplex_C = &simplices_C[s * d * (d+1)];
            double* real_simplex_C = &real_simplices_C[s * d * (d+1)];
            double* imag_simplex_C = &imag_simplices_C[s * d * (d+1)];
            merge_back_to_simplex(simplex_C, real_simplex_C, imag_simplex_C, d);
        }
#else
        %(libsupermesh_intersect_simplices)s(simplex_A, simplex_B, simplices_C, &num_elements);
#endif
        PrintInfo("Supermesh consists of %%i elements\\n", num_elements);

        // would like to do this
        //PetscScalar MAB[%(num_nodes_A)s][%(num_nodes_B)s] = (PetscScalar (*)[%(num_nodes_B)s])outptr;
        // but have to do this instead because we don't grok C
        PetscScalar (*MAB)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])outptr;
        PetscScalar (*MSS)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])M_SS; // note the underscore

        for ( int i = 0; i < num_nodes_B; i++ ) {
            for (int j = 0; j < num_nodes_A; j++) {
                MAB[i][j] = 0.0;
            }
        }

        for(int s=0; s<num_elements; s++)
        {
            PetscScalar* simplex_S = &simplices_C[s * d * (d+1)];
            double simplex_S_measure;
#if complex_mode
            double real_simplex_S[d*(d+1)];
            double imag_simplex_S[d*(d+1)];
            seperate_real_and_imag(simplex_S, real_simplex_S, imag_simplex_S, d);

            %(libsupermesh_simplex_measure)s(real_simplex_S, &simplex_S_measure);

            merge_back_to_simplex(simplex_S, real_simplex_S, imag_simplex_S, d);
#else
            %(libsupermesh_simplex_measure)s(simplex_S, &simplex_S_measure);
#endif
            PrintInfo("simplex_S coordinates with measure %%f\\n", simplex_S_measure);
            print_coordinates(simplex_S, d);

            PrintInfo("Start mapping nodes for V_A\\n");
            PetscScalar physical_nodes_A[num_nodes_A][d];
            for(int n=0; n < num_nodes_A; n++) {
                PetscScalar* reference_node_location = &nodes_A[n*d];
                PetscScalar* physical_node_location = physical_nodes_A[n];
                for (int j=0; j < d; j++) physical_node_location[j] = 0.0;
                pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location);
                PrintInfo("\\tNode ");
                print_array(reference_node_location, d);
                PrintInfo(" mapped to ");
                print_array(physical_node_location, d);
                PrintInfo("\\n");
            }
            PrintInfo("Start mapping nodes for V_B\\n");
            PetscScalar physical_nodes_B[num_nodes_B][d];
            for(int n=0; n < num_nodes_B; n++) {
                PetscScalar* reference_node_location = &nodes_B[n*d];
                PetscScalar* physical_node_location = physical_nodes_B[n];
                for (int j=0; j < d; j++) physical_node_location[j] = 0.0;
                pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location);
                PrintInfo("\\tNode ");
                print_array(reference_node_location, d);
                PrintInfo(" mapped to ");
                print_array(physical_node_location, d);
                PrintInfo("\\n");
            }
            PrintInfo("==========================================================\\n");
            PrintInfo("Start pulling back dof from S into reference space for A.\\n");
            for(int n=0; n < num_nodes_A; n++) {
                for(int i=0; i<d; i++) reference_nodes_A[n][i] = 0.;
                to_reference_coords_kernel(reference_nodes_A[n], physical_nodes_A[n], simplex_A);
                PrintInfo("Pulling back ");
                print_array(physical_nodes_A[n], d);
                PrintInfo(" to ");
                print_array(reference_nodes_A[n], d);
                PrintInfo("\\n");
            }
            PrintInfo("Start pulling back dof from S into reference space for B.\\n");
            for(int n=0; n < num_nodes_B; n++) {
                for(int i=0; i<d; i++) reference_nodes_B[n][i] = 0.;
                to_reference_coords_kernel(reference_nodes_B[n], physical_nodes_B[n], simplex_B);
                PrintInfo("Pulling back ");
                print_array(physical_nodes_B[n], d);
                PrintInfo(" to ");
                print_array(reference_nodes_B[n], d);
                PrintInfo("\\n");
            }

            PrintInfo("Start evaluating basis functions of V_A at dofs for V_A on S\\n");
            for(int i=0; i<num_nodes_A; i++) {
                coeffs_A[i] = 1.;
                for(int j=0; j<num_nodes_A; j++) {
                    R_AS[i][j] = 0.;
                    pyop2_kernel_evaluate_kernel_A(&R_AS[i][j], coeffs_A, reference_nodes_A[j]);
                }
                print_array(R_AS[i], num_nodes_A);
                PrintInfo("\\n");
                coeffs_A[i] = 0.;
            }
            PrintInfo("Start evaluating basis functions of V_B at dofs for V_B on S\\n");
            for(int i=0; i<num_nodes_B; i++) {
                coeffs_B[i] = 1.;
                for(int j=0; j<num_nodes_B; j++) {
                    R_BS[i][j] = 0.;
                    pyop2_kernel_evaluate_kernel_B(&R_BS[i][j], coeffs_B, reference_nodes_B[j]);
                }
                print_array(R_BS[i], num_nodes_B);
                PrintInfo("\\n");
                coeffs_B[i] = 0.;
            }
            PrintInfo("Start doing the matmatmat mult\\n");

            for ( int i = 0; i < num_nodes_B; i++ ) {
                for (int j = 0; j < num_nodes_A; j++) {
                    for ( int k = 0; k < num_nodes_B; k++) {
                        for ( int l = 0; l < num_nodes_A; l++) {
                            MAB[i][j] += (simplex_S_measure/simplex_ref_measure) * R_BS[i][k] * MSS[k][l] * R_AS[j][l];
                        }
                    }
                }
            }
        }
        return num_elements;
    }
    """ % {
        "evaluate_S":
        str(evaluate_kernel_S),
        "evaluate_A":
        str(evaluate_kernel_A),
        "evaluate_B":
        str(evaluate_kernel_B),
        "to_reference":
        str(to_reference_kernel),
        "num_nodes_A":
        num_nodes_A,
        "num_nodes_B":
        num_nodes_B,
        "libsupermesh_simplex_measure":
        "libsupermesh_triangle_area"
        if dim == 2 else "libsupermesh_tetrahedron_volume",
        "libsupermesh_intersect_simplices":
        "libsupermesh_intersect_tris_real"
        if dim == 2 else "libsupermesh_intersect_tets_real",
        "dim":
        dim,
        "complex_mode":
        1 if complex_mode else 0
    }

    dirs = get_petsc_dir() + (sys.prefix, )
    includes = ["-I%s/include" % d for d in dirs]
    libs = ["-L%s/lib" % d for d in dirs]
    libs = libs + ["-Wl,-rpath,%s/lib" % d
                   for d in dirs] + ["-lpetsc", "-lsupermesh"]
    lib = load(supermesh_kernel_str,
               "c",
               "supermesh_kernel",
               cppargs=includes,
               ldargs=libs,
               argtypes=[
                   ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp,
                   ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp,
                   ctypes.c_voidp
               ],
               restype=ctypes.c_int)

    ammm(V_A, V_B, likely, node_locations_A, node_locations_B, M_SS,
         ctypes.addressof(lib), mat)
    if orig_value_size == 1:
        return mat
    else:
        (lrows, grows), (lcols, gcols) = mat.getSizes()
        lrows *= orig_value_size
        grows *= orig_value_size
        lcols *= orig_value_size
        gcols *= orig_value_size
        size = ((lrows, grows), (lcols, gcols))
        context = BlockMatrix(mat, orig_value_size)
        blockmat = PETSc.Mat().createPython(size,
                                            context=context,
                                            comm=mat.comm)
        blockmat.setUp()
        return blockmat
Exemplo n.º 30
0
def create_interpolation(dmc, dmf):
    _, clvl = utils.get_level(dmc)
    _, flvl = utils.get_level(dmf)

    cctx = dmc.getAppCtx()
    fctx = dmf.getAppCtx()

    V_c = dmc.getAttr("__fs__")()
    V_f = dmf.getAttr("__fs__")()

    nrow = sum(x.dof_dset.size * x.dof_dset.cdim for x in V_f)
    ncol = sum(x.dof_dset.size * x.dof_dset.cdim for x in V_c)

    cfn = firedrake.Function(V_c)
    ffn = firedrake.Function(V_f)
    cbcs = cctx._problems[clvl].bcs
    fbcs = fctx._problems[flvl].bcs

    class Interpolation(object):
        def __init__(self, cfn, ffn, cbcs=None, fbcs=None):
            self.cfn = cfn
            self.ffn = ffn
            self.cbcs = cbcs or []
            self.fbcs = fbcs or []

        def mult(self, mat, x, y, inc=False):
            with self.cfn.dat.vec as v:
                x.copy(v)
            firedrake.prolong(self.cfn, self.ffn)
            for bc in self.fbcs:
                bc.zero(self.ffn)
            with self.ffn.dat.vec_ro as v:
                if inc:
                    y.axpy(1.0, v)
                else:
                    v.copy(y)

        def multAdd(self, mat, x, y, w):
            if y.handle == w.handle:
                self.mult(mat, x, w, inc=True)
            else:
                self.mult(mat, x, w)
                w.axpy(1.0, y)

        def multTranspose(self, mat, x, y, inc=False):
            with self.ffn.dat.vec as v:
                x.copy(v)
            firedrake.restrict(self.ffn, self.cfn)
            for bc in self.cbcs:
                bc.zero(self.cfn)
            with self.cfn.dat.vec_ro as v:
                if inc:
                    y.axpy(1.0, v)
                else:
                    v.copy(y)

        def multTransposeAdd(self, mat, x, y, w):
            if y.handle == w.handle:
                self.multTranspose(mat, x, w, inc=True)
            else:
                self.multTranspose(mat, x, w)
                w.axpy(1.0, y)

    ctx = Interpolation(cfn, ffn, cbcs, fbcs)
    mat = PETSc.Mat().create()
    mat.setSizes(((nrow, None), (ncol, None)))
    mat.setType(mat.Type.PYTHON)
    mat.setPythonContext(ctx)
    mat.setUp()
    return mat, None