Exemplo n.º 1
0
    def __init__(self, state, V, direction=[1,2], params=None):
        super(InteriorPenalty, self).__init__(state)

        dt = state.timestepping.dt
        kappa = params['kappa']
        mu = params['mu']
        gamma = TestFunction(V)
        phi = TrialFunction(V)
        self.phi1 = Function(V)
        n = FacetNormal(state.mesh)
        a = inner(gamma,phi)*dx + dt*inner(grad(gamma), grad(phi)*kappa)*dx

        def get_flux_form(dS, M):

            fluxes = (-inner(2*avg(outer(phi, n)), avg(grad(gamma)*M))
                      - inner(avg(grad(phi)*M), 2*avg(outer(gamma, n)))
                      + mu*inner(2*avg(outer(phi, n)), 2*avg(outer(gamma, n)*kappa)))*dS
            return fluxes

        if 1 in direction:
            a += dt*get_flux_form(dS_v, kappa)
        if 2 in direction:
            a += dt*get_flux_form(dS_h, kappa)
        L = inner(gamma,phi)*dx
        problem = LinearVariationalProblem(a, action(L,self.phi1), self.phi1)
        self.solver = LinearVariationalSolver(problem)
Exemplo n.º 2
0
def solvevdisp(mesh,bdryids,deltah):
    P1 = FunctionSpace(mesh, "CG", 1)
    r = TrialFunction(P1)
    s = TestFunction(P1)
    a = inner(grad(r), grad(s)) * dx   # note natural b.c. on outflow
    L = inner(Constant(0.0), s) * dx
    # WARNING: top must go *first* so closed top gets zero; is this documented behavior?
    bcs = [ DirichletBC(P1, deltah, bdryids['top']),
            DirichletBC(P1, Constant(0.0), (bdryids['base'],bdryids['inflow'])) ]
    rsoln = Function(P1)
    solve(a == L, rsoln, bcs=bcs, options_prefix='vd', solver_parameters={})
    return rsoln
Exemplo n.º 3
0
    def __init__(self, state, V, direction=[], supg_params=None):
        super(SUPGAdvection, self).__init__(state)
        dt = state.timestepping.dt
        params = supg_params.copy() if supg_params else {}
        params.setdefault('a0', dt/sqrt(15.))
        params.setdefault('a1', dt/sqrt(15.))

        gamma = TestFunction(V)
        theta = TrialFunction(V)
        self.theta0 = Function(V)

        # make SUPG test function
        taus = [params["a0"], params["a1"]]
        for i in direction:
            taus[i] = 0.0
        tau = Constant(((taus[0], 0.), (0., taus[1])))

        dgamma = dot(dot(self.ubar, tau), grad(gamma))
        gammaSU = gamma + dgamma

        n = FacetNormal(state.mesh)
        un = 0.5*(dot(self.ubar, n) + abs(dot(self.ubar, n)))

        a_mass = gammaSU*theta*dx
        arhs = a_mass - dt*gammaSU*dot(self.ubar, grad(theta))*dx

        if 1 in direction:
            arhs -= (
                dt*dot(jump(gammaSU), (un('+')*theta('+')
                                       - un('-')*theta('-')))*dS_v
                - dt*(gammaSU('+')*dot(self.ubar('+'), n('+'))*theta('+')
                      + gammaSU('-')*dot(self.ubar('-'), n('-'))*theta('-'))*dS_v
            )
        if 2 in direction:
            arhs -= (
                dt*dot(jump(gammaSU), (un('+')*theta('+')
                                       - un('-')*theta('-')))*dS_h
                - dt*(gammaSU('+')*dot(self.ubar('+'), n('+'))*theta('+')
                      + gammaSU('-')*dot(self.ubar('-'), n('-'))*theta('-'))*dS_h
            )

        self.theta1 = Function(V)
        self.dtheta = Function(V)
        problem = LinearVariationalProblem(a_mass, action(arhs,self.theta1), self.dtheta)
        self.solver = LinearVariationalSolver(problem,
                                              options_prefix='SUPGAdvection')
Exemplo n.º 4
0
def test_eigenvalues():
    nx, ny = 32, 32
    mesh = firedrake.UnitSquareMesh(nx, ny)
    x, y = firedrake.SpatialCoordinate(mesh)

    V = firedrake.VectorFunctionSpace(mesh, family='CG', degree=2)
    u = interpolate(as_vector((x, 0)), V)

    Q = firedrake.FunctionSpace(mesh, family='DG', degree=2)
    ε = sym(grad(u))
    Λ1, Λ2 = eigenvalues(ε)
    λ1 = firedrake.project(Λ1, Q)
    λ2 = firedrake.project(Λ2, Q)

    assert norm(λ1 - Constant(1)) < norm(u) / (nx * ny)
    assert norm(λ2) < norm(u) / (nx * ny)
Exemplo n.º 5
0
def cell_flux(F, v):
    r"""Create the weak form of the fluxes through the cell interior

    Parameters
    ----------
    F : ufl.Expr
        A symbolic expression for the flux
    v : firedrake.TestFunction
        A test function from the state space

    Returns
    -------
    f : firedrake.Form
        A 1-form that discretizes the residual of the flux
    """
    return -inner(F, grad(v)) * dx
Exemplo n.º 6
0
    def _ad_dot(self, other, options=None):
        from firedrake import assemble

        options = {} if options is None else options
        riesz_representation = options.get("riesz_representation", "l2")
        if riesz_representation == "l2":
            return self.vector().inner(other.vector())
        elif riesz_representation == "L2":
            return assemble(firedrake.inner(self, other) * firedrake.dx)
        elif riesz_representation == "H1":
            return assemble(
                (firedrake.inner(self, other) +
                 firedrake.inner(firedrake.grad(self), other)) * firedrake.dx)
        else:
            raise NotImplementedError("Unknown Riesz representation %s" %
                                      riesz_representation)
Exemplo n.º 7
0
    def __init__(self, mesh, conditions, timestepping, params, output, solver_params):
        super().__init__(mesh, conditions, timestepping, params, output, solver_params)

        self.w0 = Function(self.W3)
        self.w1 = Function(self.W3)

        u0, s0, h0, a0 = self.w0.split()

        p, q, r, m = TestFunctions(self.W3)

        self.initial_condition((u0, conditions.ic['u']), (s0, conditions.ic['s']),
                               (a0, conditions.ic['a']), (h0, conditions.ic['h']))

        self.w1.assign(self.w0)

        u1, s1, h1, a1 = split(self.w1)
        u0, s0, h0, a0 = split(self.w0)

        theta = conditions.theta
        uh = (1-theta) * u0 + theta * u1
        sh = (1-theta) * s0 + theta * s1
        hh = (1-theta) * h0 + theta * h1
        ah = (1-theta) * a0 + theta * a1

        ep_dot = self.strain(grad(uh))
        zeta = self.zeta(hh, ah, self.delta(uh))

        rheology = params.e ** 2 * sh + Identity(2) * 0.5 * ((1 - params.e ** 2) * tr(sh) + self.Ice_Strength(hh, ah))
        
        eqn = self.momentum_equation(hh, u1, u0, p, sh, params.rho, uh, conditions.ocean_curr, params.rho_a,
                                params.C_a, params.rho_w, params.C_w, conditions.geo_wind, params.cor, self.timestep, ind=self.ind)
        eqn += self.transport_equation(uh, hh, ah, h1, h0, a1, a0, r, m, self.n, self.timestep)
        eqn += inner(self.ind * (s1 - s0) + 0.5 * self.timestep * rheology / params.T, q) * dx
        eqn -= inner(q * zeta * self.timestep / params.T, ep_dot) * dx

        if conditions.stabilised['state']:
            alpha = conditions.stabilised['alpha']
            eqn += self.stabilisation_term(alpha=alpha, zeta=avg(zeta), mesh=mesh, v=uh, test=p)

        bcs = DirichletBC(self.W3.sub(0), conditions.bc['u'], "on_boundary")

        uprob = NonlinearVariationalProblem(eqn, self.w1, bcs)
        self.usolver = NonlinearVariationalSolver(uprob, solver_parameters=solver_params.bt_params)

        self.u1, self.s0, self.h1, self.a1 = self.w1.split()
Exemplo n.º 8
0
def prepare_trial(trial, true_sol_name, cl_ctx, queue):
    tuple_trial = trial_to_tuple(trial)
    if tuple_trial not in prepared_trials:

        mesh = trial['mesh']
        degree = trial['degree']
        kappa = trial['kappa']

        function_space = FunctionSpace(mesh, 'CG', degree)
        vect_function_space = VectorFunctionSpace(mesh, 'CG', degree)

        true_sol = get_true_sol(function_space, kappa, cl_ctx, queue)
        true_sol = Function(function_space).interpolate(true_sol)
        prepared_trials[tuple_trial] = (mesh, function_space,
                                        vect_function_space, true_sol,
                                        grad(true_sol))

    return prepared_trials[tuple_trial]
Exemplo n.º 9
0
def gravity(u, h, s):
    r"""Return the gravitational part of the ice stream action functional

    The gravitational part of the ice stream action functional is

    .. math::
       E(u) = -\int_\Omega\rho_Igh\nabla s\cdot u\; dx

    Parameters
    ----------
    u : firedrake.Function
        ice velocity
    h : firedrake.Function
        ice thickness
    s : firedrake.Function
        ice surface elevation
    """
    return -ρ_I * g * h * inner(grad(s), u)
Exemplo n.º 10
0
    def advection_term(self, q):

        n = FacetNormal(self.state.mesh)
        Upwind = 0.5 * (sign(dot(self.ubar, n)) + 1)

        if self.state.mesh.topological_dimension() == 3:
            # <w,curl(u) cross ubar + grad( u.ubar)>
            # =<curl(u),ubar cross w> - <div(w), u.ubar>
            # =<u,curl(ubar cross w)> -
            #      <<u_upwind, [[n cross(ubar cross w)cross]]>>

            both = lambda u: 2 * avg(u)

            L = (inner(q, curl(cross(self.ubar, self.test))) * dx -
                 inner(both(Upwind * q),
                       both(cross(n, cross(self.ubar, self.test)))) * self.dS)

        else:

            perp = self.state.perp
            if self.state.on_sphere:
                outward_normals = CellNormal(self.state.mesh)
                perp_u_upwind = lambda q: Upwind('+') * cross(
                    outward_normals('+'), q('+')) + Upwind('-') * cross(
                        outward_normals('-'), q('-'))
            else:
                perp_u_upwind = lambda q: Upwind('+') * perp(q('+')) + Upwind(
                    '-') * perp(q('-'))

            if self.ibp == IntegrateByParts.ONCE:
                L = (-inner(perp(grad(inner(self.test, perp(self.ubar)))), q) *
                     dx - inner(jump(inner(self.test, perp(self.ubar)), n),
                                perp_u_upwind(q)) * self.dS)
            else:
                L = ((-inner(self.test,
                             div(perp(q)) * perp(self.ubar))) * dx -
                     inner(jump(inner(self.test, perp(self.ubar)), n),
                           perp_u_upwind(q)) * self.dS +
                     jump(inner(self.test, perp(self.ubar)) * perp(q), n) *
                     self.dS)

        L -= 0.5 * div(self.test) * inner(q, self.ubar) * dx

        return L
Exemplo n.º 11
0
    def residual(self, test, trial, trial_lagged, fields, bcs):
        phi = test
        n = self.n
        p = fields['pressure']

        # NOTE: we assume p is continuous

        F = dot(phi, grad(p))*self.dx

        # do nothing should be zero (normal) stress:
        F += -dot(phi, n)*p*self.ds

        # for those boundaries where the normal component of u is specified
        # we take it out again
        for id, bc in bcs.items():
            if 'u' in bc or 'un' in bc:
                F += dot(phi, n)*p*self.ds(id)

        return -F
Exemplo n.º 12
0
    def __init__(self, mesh, conditions, timestepping, params, output, solver_params):
        super().__init__(mesh, conditions, timestepping, params, output, solver_params)

        self.w0 = Function(self.W2)
        self.w1 = Function(self.W2)

        u0, h0, a0 = self.w0.split()

        p, q, r = TestFunctions(self.W2)

        self.initial_condition((u0, conditions.ic['u']), (h0, conditions.ic['h']),
                               (a0, conditions.ic['a']))

        self.w1.assign(self.w0)
        u1, h1, a1 = split(self.w1)
        u0, h0, a0 = split(self.w0)

        theta = conditions.theta
        uh = (1-theta) * u0 + theta * u1
        ah = (1-theta) * a0 + theta * a1
        hh = (1-theta) * h0 + theta * h1

        ep_dot = self.strain(grad(uh))
        zeta = self.zeta(hh, ah, self.delta(uh))
        eta = zeta * params.e ** (-2)
        sigma = 2 * eta * ep_dot + (zeta - eta) * tr(ep_dot) * Identity(2) - self.Ice_Strength(hh, ah) * 0.5 * Identity(
            2)

        eqn = self.momentum_equation(hh, u1, u0, p, sigma, params.rho, uh, conditions.ocean_curr, params.rho_a,
                                params.C_a, params.rho_w, params.C_w, conditions.geo_wind, params.cor, self.timestep)
        eqn += self.transport_equation(uh, hh, ah, h1, h0, a1, a0, q, r, self.n, self.timestep)

        if conditions.stabilised['state']:
            alpha = conditions.stabilised['alpha']
            eqn += self.stabilisation_term(alpha=alpha, zeta=avg(zeta), mesh=mesh, v=uh, test=p)

        bcs = DirichletBC(self.W2.sub(0), conditions.bc['u'], "on_boundary")

        uprob = NonlinearVariationalProblem(eqn, self.w1, bcs)
        self.usolver = NonlinearVariationalSolver(uprob, solver_parameters=solver_params.bt_params)

        self.u1, self.h1, self.a1 = self.w1.split()
Exemplo n.º 13
0
def prepare_trial(trial, true_sol_name):
    tuple_trial = trial_to_tuple(trial)
    if tuple_trial not in prepared_trials:

        mesh = trial['mesh']
        degree = trial['degree']

        function_space = FunctionSpace(mesh, 'CG', degree)
        vect_function_space = VectorFunctionSpace(mesh, 'CG', degree)

        true_sol_expr = trial['true_sol_expr']
        true_solution = Function(function_space, name=true_sol_name).interpolate(
            true_sol_expr)
        true_solution_grad = Function(vect_function_space).interpolate(
            grad(true_sol_expr))

        prepared_trials[tuple_trial] = (mesh, function_space, vect_function_space,
                                        true_solution, true_solution_grad)

    return prepared_trials[tuple_trial]
Exemplo n.º 14
0
    def __init__(self, state, V, qbar, options=None):
        super(LinearAdvection_Vt, self).__init__(state)

        p = TestFunction(V)
        q = TrialFunction(V)
        self.dq = Function(V)

        a = p*q*dx
        k = state.k             # Upward pointing unit vector
        L = -p*dot(self.ubar,k)*dot(k,grad(qbar))*dx

        aProblem = LinearVariationalProblem(a,L,self.dq)
        if options is None:
            options = {'ksp_type':'cg',
                       'pc_type':'bjacobi',
                       'sub_pc_type':'ilu'}

        self.solver = LinearVariationalSolver(aProblem,
                                              solver_parameters=options,
                                              options_prefix='LinearAdvectionVt')
Exemplo n.º 15
0
def siahorizontalvelocity(mesh):
    hbase = surfaceelevation(mesh)
    if mesh._base_mesh.cell_dimension() == 2:
        if mesh._base_mesh.ufl_cell() == fd.quadrilateral:
            Vvectorbase = fd.VectorFunctionSpace(mesh._base_mesh, 'DQ', 0)
            VvectorR = fd.VectorFunctionSpace(mesh,
                                              'DQ',
                                              0,
                                              vfamily='R',
                                              vdegree=0,
                                              dim=2)
        else:
            Vvectorbase = fd.VectorFunctionSpace(mesh._base_mesh, 'DP', 0)
            VvectorR = fd.VectorFunctionSpace(mesh,
                                              'DP',
                                              0,
                                              vfamily='R',
                                              vdegree=0,
                                              dim=2)
        gradhbase = fd.project(fd.grad(hbase), Vvectorbase)
        Vvector = fd.VectorFunctionSpace(mesh, 'DQ', 0, dim=2)
    elif mesh._base_mesh.cell_dimension() == 1:
        Vvectorbase = fd.FunctionSpace(mesh._base_mesh, 'DP', 0)
        gradhbase = fd.project(hbase.dx(0), Vvectorbase)
        VvectorR = fd.FunctionSpace(mesh, 'DP', 0, vfamily='R', vdegree=0)
        Vvector = fd.FunctionSpace(mesh, 'DQ', 0)
    else:
        raise ValueError('base mesh of extruded input mesh must be 1D or 2D')
    gradh = fd.Function(VvectorR)
    gradh.dat.data[:] = gradhbase.dat.data_ro[:]
    h = extend(mesh, hbase)
    DQ0 = fd.FunctionSpace(mesh, 'DQ', 0)
    h0 = fd.project(h, DQ0)
    x = fd.SpatialCoordinate(mesh)
    z0 = fd.project(x[mesh._base_mesh.cell_dimension()], DQ0)
    # FIXME following only valid in flat bed case
    uvsia = -Gamma * (h0**(n + 1) -
                      (h0 - z0)**(n + 1)) * abs(gradh)**(n - 1) * gradh
    uv = fd.Function(Vvector).interpolate(uvsia)
    uv.rename('velocitySIA')
    return uv
Exemplo n.º 16
0
def betaInit(s, h, speed, V, Q, Q1, grounded, inversionParams):
    """Compute intitial beta using 0.5 taud.
    Parameters
    ----------
    s : firedrake function
        model surface elevation
    h : firedrake function
        model thickness
    speed : firedrake function
        modelled speed
    V : firedrake vector function space
        vector function space
    Q : firedrake function space
        scalar function space
    grounded : firedrake function
        Mask with 1s for grounded 0 for floating.
    """
    # Use a result from prior inversion
    checkFile = inversionParams['initFile']
    Quse = Q
    if inversionParams['initWithDeg1']:
        checkFile = f'{inversionParams["inversionResult"]}.deg1'
        Quse = Q1
    if checkFile is not None:
        betaTemp = mf.getCheckPointVars(checkFile, 'betaInv', Quse)['betaInv']
        beta1 = icepack.interpolate(betaTemp, Q)
        return beta1
    # No prior result, so use fraction of taud
    tauD = firedrake.project(-rhoI * g * h * grad(s), V)
    #
    stress = firedrake.sqrt(firedrake.inner(tauD, tauD))
    Print('stress', firedrake.assemble(stress * firedrake.dx))
    fraction = firedrake.Constant(0.95)
    U = max_value(speed, 1)
    C = fraction * stress / U**(1/m)
    if inversionParams['friction'] == 'schoof':
        mExp = 1/m + 1
        U0 = firedrake.Constant(inversionParams['uThresh'])
        C = C * (m/(m+1)) * (U0**mExp + U**mExp)**(1/(m+1))
    beta = firedrake.interpolate(firedrake.sqrt(C) * grounded, Q)
    return beta
Exemplo n.º 17
0
def gravity(u, h):
    r"""Return the gravitational part of the ice shelf action functional

    The gravitational part of the ice shelf action functional is

    .. math::
        E(u) = -\frac{1}{2}\int_\Omega\varrho g\nabla h^2\cdot u\hspace{2pt}dx

    Parameters
    ----------
    u : firedrake.Function
        ice velocity
    h : firedrake.Function
        ice thickness

    Returns
    -------
    firedrake.Form
    """
    ρ = ρ_I * (1 - ρ_I / ρ_W)
    return -0.5 * ρ * g * inner(grad(h**2), u) * dx
Exemplo n.º 18
0
def norm(u, norm_type="L2"):
    r"""Compute the norm of a field

    Computes one of any number of norms of a scalar or vector field. The
    available options are:

    - ``L2``: :math:`\|u\|^2 = \int_\Omega|u|^2dx`

    - ``H01``: :math:`\|u\|^2 = \int_\Omega|\nabla u|^2dx`

    - ``H1``: :math:`\|u\|^2 = \int_\Omega\left(|u|^2 + L^2|\nabla u|^2\right)dx`

    - ``L1``: :math:`\|u\| = \int_\Omega|u|dx`

    - ``TV``: :math:`\|u\| = \int_\Omega|\nabla u|dx`

    - ``Linfty``: :math:`\|u\| = \max_{x\in\Omega}|u(x)|`

    The extra factor :math:`L` in the :math:`H^1` norm is the diameter of
    the domain in the infinity metric. This extra factor is included to
    make the norm scale appropriately with the size of the domain.
    """
    if norm_type == "L2":
        form, p = inner(u, u) * dx, 2

    if norm_type == "H01":
        form, p = inner(grad(u), grad(u)) * dx, 2

    if norm_type == "H1":
        L = utilities.diameter(u.ufl_domain())
        form, p = inner(u, u) * dx + L**2 * inner(grad(u), grad(u)) * dx, 2

    if norm_type == "L1":
        form, p = sqrt(inner(u, u)) * dx, 1

    if norm_type == "TV":
        form, p = sqrt(inner(grad(u), grad(u))) * dx, 1

    if norm_type == "Linfty":
        data = u.dat.data_ro
        if len(data.shape) == 1:
            local_max = np.max(np.abs(data))
        elif len(data.shape) == 2:
            local_max = np.max(np.sqrt(np.sum(data**2, 1)))

        return u.comm.allreduce(local_max, op=max)

    return assemble(form)**(1 / p)
Exemplo n.º 19
0
 def update_state(self):
     lam = self.lam
     c = self.c
     av = self.bound.vector()[:]
     self.S.assign(self.T)
     self.S -= self.iden
     S = self.S
     self.gradS.project(fd.grad(S))
     lam_c_grad_S = self.lam_c_grad_S
     lam_c_grad_S.project(lam / c + self.gradS)
     lam_c_grad_Sv = lam_c_grad_S.vector()
     B = self.argmin.vector()[:].copy()
     nucv = self.nuclear_norm.vector()[:].copy()
     for i in range(len(lam_c_grad_Sv)):
         W, Sigma, V = svd(lam_c_grad_Sv[i], full_matrices=False)
         for j in range(self.dim):
             Sigma[j] = c * max(Sigma[j] - av[i], 0)
         B[i] = np.dot(W, np.dot(np.diag(Sigma), V))
         nucv[i] = av[i] * np.sum(Sigma)
     self.argmin.vector().set_local(B.flatten())
     self.nuclear_norm.vector().set_local(nucv.flatten())
Exemplo n.º 20
0
    def sources(self, **kwargs):
        keys = ('damage', 'velocity', 'fluidity')
        keys_alt = ('D', 'u', 'A')
        D, u, A = get_kwargs_alt(kwargs, keys, keys_alt)

        # Increase/decrease damage depending on stress and strain rates
        ε = sym(grad(u))
        ε_1 = eigenvalues(ε)[0]

        σ = M(ε, A)
        σ_e = sqrt(inner(σ, σ) - det(σ))

        ε_h = firedrake.Constant(self.healing_strain_rate)
        σ_d = firedrake.Constant(self.damage_stress)
        γ_h = firedrake.Constant(self.healing_rate)
        γ_d = firedrake.Constant(self.damage_rate)

        healing = γ_h * min_value(ε_1 - ε_h, 0)
        fracture = γ_d * conditional(σ_e - σ_d > 0, ε_1, 0.) * (1 - D)

        return healing + fracture
Exemplo n.º 21
0
    def setup(self, state, vorticity_type=None):
        """Solver for vorticity.

        :arg state: The state containing model.
        :arg vorticity_type: must be "relative", "absolute" or "potential"
        """
        if not self._initialised:
            vorticity_types = ["relative", "absolute", "potential"]
            if vorticity_type not in vorticity_types:
                raise ValueError("vorticity type must be one of %s, not %s" % (vorticity_types, vorticity_type))
            try:
                space = state.spaces("CG")
            except AttributeError:
                dgspace = state.spaces("DG")
                cg_degree = dgspace.ufl_element().degree() + 2
                space = FunctionSpace(state.mesh, "CG", cg_degree)
            super().setup(state, space=space)
            u = state.fields("u")
            gamma = TestFunction(space)
            q = TrialFunction(space)

            if vorticity_type == "potential":
                D = state.fields("D")
                a = q*gamma*D*dx
            else:
                a = q*gamma*dx

            if state.on_sphere:
                cell_normals = CellNormal(state.mesh)
                gradperp = lambda psi: cross(cell_normals, grad(psi))
                L = (- inner(gradperp(gamma), u))*dx
            else:
                raise NotImplementedError("The vorticity diagnostics have only been implemented for 2D spherical geometries.")

            if vorticity_type != "relative":
                f = state.fields("coriolis")
                L += gamma*f*dx

            problem = LinearVariationalProblem(a, L, self.field)
            self.solver = LinearVariationalSolver(problem, solver_parameters={"ksp_type": "cg"})
Exemplo n.º 22
0
    def __init__(self, state, V, continuity=False):

        super(DGAdvection, self).__init__(state)

        element = V.fiat_element
        assert element.entity_dofs() == element.entity_closure_dofs(), "Provided space is not discontinuous"
        dt = state.timestepping.dt

        if V.extruded:
            surface_measure = (dS_h + dS_v)
        else:
            surface_measure = dS

        phi = TestFunction(V)
        D = TrialFunction(V)
        self.D1 = Function(V)
        self.dD = Function(V)

        n = FacetNormal(state.mesh)
        # ( dot(v, n) + |dot(v, n)| )/2.0
        un = 0.5*(dot(self.ubar, n) + abs(dot(self.ubar, n)))

        a_mass = inner(phi,D)*dx

        if continuity:
            a_int = -inner(grad(phi), outer(D, self.ubar))*dx
        else:
            a_int = -inner(div(outer(phi,self.ubar)),D)*dx

        a_flux = (dot(jump(phi), un('+')*D('+') - un('-')*D('-')))*surface_measure
        arhs = a_mass - dt*(a_int + a_flux)

        DGproblem = LinearVariationalProblem(a_mass, action(arhs,self.D1),
                                             self.dD)
        self.DGsolver = LinearVariationalSolver(DGproblem,
                                                solver_parameters={
                                                    'ksp_type':'preonly',
                                                    'pc_type':'bjacobi',
                                                    'sub_pc_type': 'ilu'},
                                                options_prefix='DGAdvection')
Exemplo n.º 23
0
def gravity(**kwargs):
    r"""Return the gravitational part of the ice stream action functional

    The gravitational part of the ice stream action functional is

    .. math::
       E(u) = -\int_\Omega\rho_Igh\nabla s\cdot u\; dx

    Parameters
    ----------
    u : firedrake.Function
        ice velocity
    h : firedrake.Function
        ice thickness
    s : firedrake.Function
        ice surface elevation
    """
    keys = ('velocity', 'thickness', 'surface')
    keys_alt = ('u', 'h', 's')
    u, h, s = get_kwargs_alt(kwargs, keys, keys_alt)

    return -ρ_I * g * h * inner(grad(s), u)
Exemplo n.º 24
0
    def residual(self, test, trial, trial_lagged, fields, bcs):
        psi = test
        n = self.n
        u = fields['velocity']

        # NOTE: we assume psi is continuous
        # assert is_continuous(psi)
        F = -dot(grad(psi), u)*self.dx

        # do nothing should be zero (normal) stress, which means no (Dirichlet condition)
        # should be imposed on the normal component
        F += psi*dot(n, u)*self.ds

        # for those boundaries where the normal component of u is specified
        # we take it out again and replace with the specified un
        for id, bc in bcs.items():
            if 'u' in bc:
                F += psi*dot(n, bc['u']-u)*self.ds(id)
            elif 'un' in bc:
                F += psi*(bc['un'] - dot(n, u))*self.ds(id)

        return -F
Exemplo n.º 25
0
    def __init__(self, state, V, qbar, options=None):
        super(LinearAdvection_V3, self).__init__(state)

        p = TestFunction(V)
        q = TrialFunction(V)
        self.dq = Function(V)

        n = FacetNormal(state.mesh)

        a = p*q*dx
        L = (dot(grad(p), self.ubar)*qbar*dx -
             jump(self.ubar*p, n)*avg(qbar)*(dS_v + dS_h))

        aProblem = LinearVariationalProblem(a,L,self.dq)
        if options is None:
            options = {'ksp_type':'cg',
                       'pc_type':'bjacobi',
                       'sub_pc_type':'ilu'}

        self.solver = LinearVariationalSolver(aProblem,
                                              solver_parameters=options,
                                              options_prefix='LinearAdvectionV3')
Exemplo n.º 26
0
def create_dirichlet_bounds(mesh, V, T, v, k, g, boundary=[1, 2, 3, 4, 5, 6]):
    """
    Create the dirichlet boundary conditions:
    u = g on boundary

    mesh: Mesh, The mesh to define the bound for
    V: FunctionSpace, The function space for the boundary
    T: Function, The function to be calculated
    v: Function, The test function
    k: Function, The conductivity of the problem
    g: float, Used in above formula

    Returns: bcs, R and b, the defining functions of the bound
    Type: list<DirichletBC>, Function, Function
    """
    norm = FacetNormal(mesh)

    bcs = [DirichletBC(V, g, boundary)]
    R = 0
    b = k*v*dot(grad(T), norm)*ds

    return bcs, R, b
Exemplo n.º 27
0
    def f_g_scattered_plane_wave(self, d):
        """Sets f and g to correspond to the scattering of a plane wave
        by a compactly-supported heterogeneous region.

        Parameters - d - list of the length of the spatial dimension;
        the direction in which the plane wave propagates.
        """

        d = fd.as_vector(d)

        x = fd.SpatialCoordinate(self.V.mesh())

        # Incident wave
        u_I = fd.exp(1j * self._k * fd.dot(x, d))

        identity = fd.as_matrix([[1.0, 0.0], [0.0, 1.0]])

        f = fd.div(fd.dot((identity-self._A),fd.grad(u_I)))\
            + self._k**2.0 * fd.inner((1.0-self._n), u_I)

        self.set_f(f)

        self.set_g(0.0)
Exemplo n.º 28
0
def gravity(**kwargs):
    r"""Return the gravitational part of the ice shelf action functional

    The gravitational part of the ice shelf action functional is

    .. math::
        E(u) = -\frac{1}{2}\int_\Omega\varrho g\nabla h^2\cdot u\; dx

    Parameters
    ----------
    u : firedrake.Function
        ice velocity
    h : firedrake.Function
        ice thickness

    Returns
    -------
    firedrake.Form
    """
    u, h = itemgetter("velocity", "thickness")(kwargs)

    ρ = ρ_I * (1 - ρ_I / ρ_W)
    return -0.5 * ρ * g * inner(grad(h**2), u)
Exemplo n.º 29
0
    def __init__(self, mesh, V):
        """
        Initialiser for Problem.
        Sets up the a and L variables that are used throughout the mixins.

        Args:
            mesh (firedrake.Mesh):
                The mesh that the problem is defined on.
            V (firedrake.FunctionSpace):
                The function space to define the solution on.
        """
        self._functions = []

        # Store the function space details.
        self.mesh = mesh
        self.V = V

        # Initialise functions for problem.
        self.v = TestFunction(V)

        self._add_function('T')
        self._add_function('S')
        self._add_function('K')
        self._add_function('q')
        self._add_function('v_th')
        self._add_function('ionisation')
        self._add_function('atomic_number')
        self._add_function('a')
        self._add_function('L')

        self.q = self.K * grad(self.T)
        self.v_th = sqrt(3 * e * self.T / m_e)
        self.ionisation = self._ionisation()

        self.a = self._A()
        self.L = self._f()
Exemplo n.º 30
0
    def __init__(self, mesh, conditions, timestepping, params, output, solver_params):
        super().__init__(mesh, conditions, timestepping, params, output, solver_params)

        self.w0 = Function(self.W1)
        self.w1 = Function(self.W1)
        self.a = Function(self.U)
        self.h = Function(self.U)

        self.u0, self.s0 = self.w0.split()
        self.p, self.q = TestFunctions(self.W1)

        self.initial_condition((self.u0, conditions.ic['u']), (self.s0, conditions.ic['s']),
                               (self.a, conditions.ic['a']), (self.h, conditions.ic['h']))

        self.w1.assign(self.w0)
        u1, s1 = split(self.w1)
        u0, s0 = split(self.w0)

        theta = conditions.theta
        uh = (1-theta) * u0 + theta * u1
        sh = (1-theta) * s0 + theta * s1

        self.ep_dot = self.strain(grad(uh))
        zeta = self.zeta(self.h, self.a, self.delta(uh))
        self.rheology = params.e ** 2 * sh + Identity(2) * 0.5 * ((1 - params.e ** 2) * tr(sh) + self.Ice_Strength(self.h, self.a))
        
        self.eqn = self.momentum_equation(self.h, u1, u0, self.p, sh, params.rho, uh, conditions.ocean_curr, params.rho_a,
                                          params.C_a, params.rho_w, params.C_w, conditions.geo_wind, params.cor, self.timestep, ind=self.ind)
        self.eqn += inner(self.ind * (s1 - s0) + 0.5 * self.timestep * self.rheology / params.T, self.q) * dx
        self.eqn -= inner(self.q * zeta * self.timestep / params.T, self.ep_dot) * dx

        if conditions.stabilised['state']:
            alpha = conditions.stabilised['alpha']
            self.eqn += self.stabilisation_term(alpha=alpha, zeta=avg(zeta), mesh=mesh, v=uh, test=self.p)
            
        self.bcs = DirichletBC(self.W1.sub(0), conditions.bc['u'], "on_boundary")
Exemplo n.º 31
0
    def setup(self, state, vorticity_type=None):
        """Solver for vorticity.

        :arg state: The state containing model.
        :arg vorticity_type: must be "relative", "absolute" or "potential"
        """
        if not self._initialised:
            vorticity_types = ["relative", "absolute", "potential"]
            if vorticity_type not in vorticity_types:
                raise ValueError("vorticity type must be one of %s, not %s" %
                                 (vorticity_types, vorticity_type))
            try:
                space = state.spaces("CG")
            except ValueError:
                dgspace = state.spaces("DG")
                cg_degree = dgspace.ufl_element().degree() + 2
                space = FunctionSpace(state.mesh, "CG", cg_degree)
            super().setup(state, space=space)
            u = state.fields("u")
            gamma = TestFunction(space)
            q = TrialFunction(space)

            if vorticity_type == "potential":
                D = state.fields("D")
                a = q * gamma * D * dx
            else:
                a = q * gamma * dx

            L = (-inner(state.perp(grad(gamma)), u)) * dx
            if vorticity_type != "relative":
                f = state.fields("coriolis")
                L += gamma * f * dx

            problem = LinearVariationalProblem(a, L, self.field)
            self.solver = LinearVariationalSolver(
                problem, solver_parameters={"ksp_type": "cg"})
Exemplo n.º 32
0
def nonlocal_integral_eq(
    mesh,
    scatterer_bdy_id,
    outer_bdy_id,
    wave_number,
    options_prefix=None,
    solver_parameters=None,
    fspace=None,
    vfspace=None,
    true_sol_grad_expr=None,
    actx=None,
    dgfspace=None,
    dgvfspace=None,
    meshmode_src_connection=None,
    qbx_kwargs=None,
):
    r"""
        see run_method for descriptions of unlisted args

        args:

        gamma and beta are used to precondition
        with the following equation:

        \Delta u - \kappa^2 \gamma u = 0
        (\partial_n - i\kappa\beta) u |_\Sigma = 0
    """
    # make sure we get outer bdy id as tuple in case it consists of multiple ids
    if isinstance(outer_bdy_id, int):
        outer_bdy_id = [outer_bdy_id]
    outer_bdy_id = tuple(outer_bdy_id)
    # away from the excluded region, but firedrake and meshmode point
    # into
    pyt_inner_normal_sign = -1

    ambient_dim = mesh.geometric_dimension()

    # {{{ Build src and tgt

    # build connection meshmode near src boundary -> src boundary inside meshmode
    from meshmode.discretization.poly_element import \
        InterpolatoryQuadratureSimplexGroupFactory
    from meshmode.discretization.connection import make_face_restriction
    factory = InterpolatoryQuadratureSimplexGroupFactory(
        dgfspace.finat_element.degree)
    src_bdy_connection = make_face_restriction(actx,
                                               meshmode_src_connection.discr,
                                               factory, scatterer_bdy_id)
    # source is a qbx layer potential
    from pytential.qbx import QBXLayerPotentialSource
    disable_refinement = (fspace.mesh().geometric_dimension() == 3)
    qbx = QBXLayerPotentialSource(src_bdy_connection.to_discr,
                                  **qbx_kwargs,
                                  _disable_refinement=disable_refinement)

    # get target indices and point-set
    target_indices, target = get_target_points_and_indices(
        fspace, outer_bdy_id)

    # }}}

    # build the operations
    from pytential import bind, sym
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * sym.grad(
        ambient_dim,
        sym.D(HelmholtzKernel(ambient_dim),
              sym.var("u"),
              k=sym.var("k"),
              qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
    """
    op = pyt_inner_normal_sign * 1j * sym.var("k") * (sym.D(
        HelmholtzKernel(ambient_dim),
        sym.var("u"),
        k=sym.var("k"),
        qbx_forced_limit=None))

    # bind the operations
    pyt_grad_op = bind((qbx, target), grad_op)
    pyt_op = bind((qbx, target), op)

    # }}}

    class MatrixFreeB(object):
        def __init__(self, A, pyt_grad_op, pyt_op, actx, kappa):
            """
            :arg kappa: The wave number
            """

            self.actx = actx
            self.k = kappa
            self.pyt_op = pyt_op
            self.pyt_grad_op = pyt_grad_op
            self.A = A
            self.meshmode_src_connection = meshmode_src_connection

            # {{{ Create some functions needed for multing
            self.x_fntn = Function(fspace)

            # CG
            self.potential_int = Function(fspace)
            self.potential_int.dat.data[:] = 0.0
            self.grad_potential_int = Function(vfspace)
            self.grad_potential_int.dat.data[:] = 0.0
            self.pyt_result = Function(fspace)

            self.n = FacetNormal(mesh)
            self.v = TestFunction(fspace)

            # some meshmode ones
            self.x_mm_fntn = self.meshmode_src_connection.discr.empty(
                self.actx, dtype='c')

            # }}}

        def mult(self, mat, x, y):
            # Copy function data into the fivredrake function
            self.x_fntn.dat.data[:] = x[:]
            # Transfer the function to meshmode
            self.meshmode_src_connection.from_firedrake(project(
                self.x_fntn, dgfspace),
                                                        out=self.x_mm_fntn)
            # Restrict to boundary
            x_mm_fntn_on_bdy = src_bdy_connection(self.x_mm_fntn)

            # Apply the operation
            potential_int_mm = self.pyt_op(self.actx,
                                           u=x_mm_fntn_on_bdy,
                                           k=self.k)
            grad_potential_int_mm = self.pyt_grad_op(self.actx,
                                                     u=x_mm_fntn_on_bdy,
                                                     k=self.k)
            # Store in firedrake
            self.potential_int.dat.data[target_indices] = potential_int_mm.get(
            )
            for dim in range(grad_potential_int_mm.shape[0]):
                self.grad_potential_int.dat.data[
                    target_indices, dim] = grad_potential_int_mm[dim].get()

            # Integrate the potential
            r"""
            Compute the inner products using firedrake. Note this
            will be subtracted later, hence appears off by a sign.

            .. math::

                \langle
                    n(x) \cdot \nabla(
                        \int_\Gamma(
                            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                        )d\gamma(y)
                    ), v
                \rangle_\Sigma
                - \langle
                    i \kappa \cdot
                    \int_\Gamma(
                        u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                    )d\gamma(y), v
                \rangle_\Sigma
            """
            self.pyt_result = assemble(
                inner(inner(self.grad_potential_int, self.n), self.v) *
                ds(outer_bdy_id) -
                inner(self.potential_int, self.v) * ds(outer_bdy_id))

            # y <- Ax - evaluated potential
            self.A.mult(x, y)
            with self.pyt_result.dat.vec_ro as ep:
                y.axpy(-1, ep)

    # {{{ Compute normal helmholtz operator
    u = TrialFunction(fspace)
    v = TestFunction(fspace)
    r"""
    .. math::

        \langle
            \nabla u, \nabla v
        \rangle
        - \kappa^2 \cdot \langle
            u, v
        \rangle
        - i \kappa \langle
            u, v
        \rangle_\Sigma
    """
    a = inner(grad(u), grad(v)) * dx \
        - Constant(wave_number**2) * inner(u, v) * dx \
        - Constant(1j * wave_number) * inner(u, v) * ds(outer_bdy_id)

    # get the concrete matrix from a general bilinear form
    A = assemble(a).M.handle
    # }}}

    # {{{ Setup Python matrix
    B = PETSc.Mat().create()

    # build matrix context
    Bctx = MatrixFreeB(A, pyt_grad_op, pyt_op, actx, wave_number)

    # set up B as same size as A
    B.setSizes(*A.getSizes())

    B.setType(B.Type.PYTHON)
    B.setPythonContext(Bctx)
    B.setUp()
    # }}}

    # {{{ Create rhs

    # Remember f is \partial_n(true_sol)|_\Gamma
    # so we just need to compute \int_\Gamma\partial_n(true_sol) H(x-y)

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * \
        sym.grad(ambient_dim, sym.S(HelmholtzKernel(ambient_dim),
                                    sym.n_dot(sigma),
                                    k=sym.var("k"), qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            f(y) H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
        )
    """
    op = 1j * sym.var("k") * pyt_inner_normal_sign * \
        sym.S(HelmholtzKernel(ambient_dim),
              sym.n_dot(sigma),
              k=sym.var("k"),
              qbx_forced_limit=None)

    rhs_grad_op = bind((qbx, target), grad_op)
    rhs_op = bind((qbx, target), op)

    # Transfer to meshmode
    metadata = {'quadrature_degree': 2 * fspace.ufl_element().degree()}
    dg_true_sol_grad = project(true_sol_grad_expr,
                               dgvfspace,
                               form_compiler_parameters=metadata)
    true_sol_grad_mm = meshmode_src_connection.from_firedrake(dg_true_sol_grad,
                                                              actx=actx)
    true_sol_grad_mm = src_bdy_connection(true_sol_grad_mm)
    # Apply the operations
    f_grad_convoluted_mm = rhs_grad_op(actx,
                                       sigma=true_sol_grad_mm,
                                       k=wave_number)
    f_convoluted_mm = rhs_op(actx, sigma=true_sol_grad_mm, k=wave_number)
    # Transfer function back to firedrake
    f_grad_convoluted = Function(vfspace)
    f_convoluted = Function(fspace)
    f_grad_convoluted.dat.data[:] = 0.0
    f_convoluted.dat.data[:] = 0.0

    for dim in range(f_grad_convoluted_mm.shape[0]):
        f_grad_convoluted.dat.data[target_indices,
                                   dim] = f_grad_convoluted_mm[dim].get()
    f_convoluted.dat.data[target_indices] = f_convoluted_mm.get()
    r"""
        \langle
            f, v
        \rangle_\Gamma
        + \langle
            i \kappa \cdot \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y), v
        \rangle_\Sigma
        - \langle
            n(x) \cdot \nabla(
                \int_\Gamma(
                    f(y) H_0^{(1)}(\kappa |x - y|)
                )d\gamma(y)
            ), v
        \rangle_\Sigma
    """
    rhs_form = inner(inner(true_sol_grad_expr, FacetNormal(mesh)),
                     v) * ds(scatterer_bdy_id, metadata=metadata) \
        + inner(f_convoluted, v) * ds(outer_bdy_id) \
        - inner(inner(f_grad_convoluted, FacetNormal(mesh)),
                v) * ds(outer_bdy_id)

    rhs = assemble(rhs_form)

    # {{{ set up a solver:
    solution = Function(fspace, name="Computed Solution")

    #       {{{ Used for preconditioning
    if 'gamma' in solver_parameters or 'beta' in solver_parameters:
        gamma = complex(solver_parameters.pop('gamma', 1.0))

        import cmath
        beta = complex(solver_parameters.pop('beta', cmath.sqrt(gamma)))

        p = inner(grad(u), grad(v)) * dx \
            - Constant(wave_number**2 * gamma) * inner(u, v) * dx \
            - Constant(1j * wave_number * beta) * inner(u, v) * ds(outer_bdy_id)
        P = assemble(p).M.handle

    else:
        P = A
    #       }}}

    # Set up options to contain solver parameters:
    ksp = PETSc.KSP().create()
    if solver_parameters['pc_type'] == 'pyamg':
        del solver_parameters['pc_type']  # We are using the AMG preconditioner

        pyamg_tol = solver_parameters.get('pyamg_tol', None)
        if pyamg_tol is not None:
            pyamg_tol = float(pyamg_tol)
        pyamg_maxiter = solver_parameters.get('pyamg_maxiter', None)
        if pyamg_maxiter is not None:
            pyamg_maxiter = int(pyamg_maxiter)
        ksp.setOperators(B)
        ksp.setUp()
        pc = ksp.pc
        pc.setType(pc.Type.PYTHON)
        pc.setPythonContext(
            AMGTransmissionPreconditioner(wave_number,
                                          fspace,
                                          A,
                                          tol=pyamg_tol,
                                          maxiter=pyamg_maxiter,
                                          use_plane_waves=True))
    # Otherwise use regular preconditioner
    else:
        ksp.setOperators(B, P)

    options_manager = OptionsManager(solver_parameters, options_prefix)
    options_manager.set_from_options(ksp)

    import petsc4py.PETSc
    petsc4py.PETSc.Sys.popErrorHandler()
    with rhs.dat.vec_ro as b:
        with solution.dat.vec as x:
            ksp.solve(b, x)
    # }}}

    return ksp, solution
Exemplo n.º 33
0
 def nabla_phi_bar(phi):
     return sqrt(inner(grad(phi), grad(phi)))
Exemplo n.º 34
0
    def solve(self, phi: fd.Function, iters: int = 5) -> fd.Function:

        marking = fd.Function(self.DG0)
        marking_bc_nodes = fd.Function(self.V)
        # Mark cells cut by phi(x) = 0
        domain = "{[i, j]: 0 <= i < b.dofs}"
        instructions = """
                <float64> min_value = 1e20
                <float64> max_value = -1e20
                for i
                    min_value = fmin(min_value, b[i, 0])
                    max_value = fmax(max_value, b[i, 0])
                end
                a[0, 0] = 1.0 if (min_value < 0 and max_value > 0) else 0.0
                """
        fd.par_loop(
            (domain, instructions),
            dx,
            {
                "a": (marking, RW),
                "b": (phi, READ)
            },
            is_loopy_kernel=True,
        )
        # Mark the nodes in the marked cells
        fd.par_loop(
            ("{[i] : 0 <= i < A.dofs}", "A[i, 0] = fmax(A[i, 0], B[0, 0])"),
            dx,
            {
                "A": (marking_bc_nodes, RW),
                "B": (marking, READ)
            },
            is_loopy_kernel=True,
        )
        # Mark the nodes in the marked cells
        # Project the gradient of phi on the cut cells
        self.phi.assign(phi)
        V = self.V
        rho, sigma = fd.TrialFunction(V), fd.TestFunction(V)
        a = rho * sigma * marking * dx
        L_proj = (self.phi / sqrt(inner(grad(self.phi), grad(self.phi))) *
                  marking * sigma * dx)
        bc_proj = BCOut(V, fd.Constant(0.0), marking_bc_nodes)
        self.A_proj = fd.assemble(a, tensor=self.A_proj, bcs=bc_proj)
        b_proj = fd.assemble(L_proj, bcs=bc_proj)
        solver_proj = fd.LinearSolver(self.A_proj,
                                      solver_parameters=self.solver_parameters)
        solver_proj.solve(self.phi_int, b_proj)

        def nabla_phi_bar(phi):
            return sqrt(inner(grad(phi), grad(phi)))

        def d1(s):
            return fd.Constant(1.0) - fd.Constant(1.0) / s

        def d2(s):
            return conditional(le(s, fd.Constant(1.0)), s - fd.Constant(1.0),
                               d1(s))

        def residual_phi(phi):
            return fd.norm(
                fd.assemble(
                    d2(nabla_phi_bar(phi)) * inner(grad(phi), grad(sigma)) *
                    dx))

        a = inner(grad(rho), grad(sigma)) * dx
        L = (inner(
            (-d2(nabla_phi_bar(self.phi)) + fd.Constant(1.0)) * grad(self.phi),
            grad(sigma),
        ) * dx)
        bc = BCInt(V, self.phi_int, marking_bc_nodes)
        phi_sol = fd.Function(V)
        A = fd.assemble(a, bcs=bc)
        b = fd.assemble(L, bcs=bc)
        solver = fd.LinearSolver(A, solver_parameters=self.solver_parameters)

        # Solve the Signed distance equation with Picard iteration
        bc.apply(phi_sol)
        init_res = residual_phi(phi_sol)
        res = 1e10
        it = 0
        while res > init_res or it < iters:
            solver.solve(phi_sol, b)
            self.phi.assign(phi_sol)
            b = fd.assemble(L, bcs=bc, tensor=b)
            it += 1
            res = residual_phi(phi_sol)
        if res > init_res:
            fd.warning(
                f"Residual in signed distance function increased: {res}, before: {init_res}"
            )
        return self.phi
Exemplo n.º 35
0
 def residual_phi(phi):
     return fd.norm(
         fd.assemble(
             d2(nabla_phi_bar(phi)) * inner(grad(phi), grad(sigma)) *
             dx))
Exemplo n.º 36
0
def heat_exchanger_optimization(mu=0.03, n_iters=1000):

    output_dir = "2D/"

    path = os.path.abspath(__file__)
    dir_path = os.path.dirname(path)
    mesh = fd.Mesh(f"{dir_path}/2D_mesh.msh")
    # Perturb the mesh coordinates. Necessary to calculate shape derivatives
    S = fd.VectorFunctionSpace(mesh, "CG", 1)
    s = fd.Function(S, name="deform")
    mesh.coordinates.assign(mesh.coordinates + s)

    # Initial level set function
    x, y = fd.SpatialCoordinate(mesh)
    PHI = fd.FunctionSpace(mesh, "CG", 1)
    phi_expr = sin(y * pi / 0.2) * cos(x * pi / 0.2) - fd.Constant(0.8)
    # Avoid recording the operation interpolate into the tape.
    # Otherwise, the shape derivatives will not be correct
    with fda.stop_annotating():
        phi = fd.interpolate(phi_expr, PHI)
        phi.rename("LevelSet")
        fd.File(output_dir + "phi_initial.pvd").write(phi)

    # Physics
    mu = fd.Constant(mu)  # viscosity
    alphamin = 1e-12
    alphamax = 2.5 / (2e-4)
    parameters = {
        "mat_type": "aij",
        "ksp_type": "preonly",
        "ksp_converged_reason": None,
        "pc_type": "lu",
        "pc_factor_mat_solver_type": "mumps",
    }
    stokes_parameters = parameters
    temperature_parameters = parameters
    u_inflow = 2e-3
    tin1 = fd.Constant(10.0)
    tin2 = fd.Constant(100.0)

    P2 = fd.VectorElement("CG", mesh.ufl_cell(), 2)
    P1 = fd.FiniteElement("CG", mesh.ufl_cell(), 1)
    TH = P2 * P1
    W = fd.FunctionSpace(mesh, TH)

    U = fd.TrialFunction(W)
    u, p = fd.split(U)
    V = fd.TestFunction(W)
    v, q = fd.split(V)

    epsilon = fd.Constant(10000.0)

    def hs(phi, epsilon):
        return fd.Constant(alphamax) * fd.Constant(1.0) / (
            fd.Constant(1.0) + exp(-epsilon * phi)) + fd.Constant(alphamin)

    def stokes(phi, BLOCK_INLET_MOUTH, BLOCK_OUTLET_MOUTH):
        a_fluid = mu * inner(grad(u), grad(v)) - div(v) * p - q * div(u)
        darcy_term = inner(u, v)
        return (a_fluid * dx + hs(phi, epsilon) * darcy_term * dx(0) +
                alphamax * darcy_term *
                (dx(BLOCK_INLET_MOUTH) + dx(BLOCK_OUTLET_MOUTH)))

    # Dirichlet boundary conditions
    inflow1 = fd.as_vector([
        u_inflow * sin(
            ((y - (line_sep -
                   (dist_center + inlet_width))) * pi) / inlet_width),
        0.0,
    ])
    inflow2 = fd.as_vector([
        u_inflow * sin(((y - (line_sep + dist_center)) * pi) / inlet_width),
        0.0,
    ])

    noslip = fd.Constant((0.0, 0.0))

    # Stokes 1
    bcs1_1 = fd.DirichletBC(W.sub(0), noslip, WALLS)
    bcs1_2 = fd.DirichletBC(W.sub(0), inflow1, INLET1)
    bcs1_3 = fd.DirichletBC(W.sub(1), fd.Constant(0.0), OUTLET1)
    bcs1_4 = fd.DirichletBC(W.sub(0), noslip, INLET2)
    bcs1_5 = fd.DirichletBC(W.sub(0), noslip, OUTLET2)
    bcs1 = [bcs1_1, bcs1_2, bcs1_3, bcs1_4, bcs1_5]

    # Stokes 2
    bcs2_1 = fd.DirichletBC(W.sub(0), noslip, WALLS)
    bcs2_2 = fd.DirichletBC(W.sub(0), inflow2, INLET2)
    bcs2_3 = fd.DirichletBC(W.sub(1), fd.Constant(0.0), OUTLET2)
    bcs2_4 = fd.DirichletBC(W.sub(0), noslip, INLET1)
    bcs2_5 = fd.DirichletBC(W.sub(0), noslip, OUTLET1)
    bcs2 = [bcs2_1, bcs2_2, bcs2_3, bcs2_4, bcs2_5]

    # Forward problems
    U1, U2 = fd.Function(W), fd.Function(W)
    L = inner(fd.Constant((0.0, 0.0, 0.0)), V) * dx
    problem = fd.LinearVariationalProblem(stokes(-phi, INMOUTH2, OUTMOUTH2),
                                          L,
                                          U1,
                                          bcs=bcs1)
    solver_stokes1 = fd.LinearVariationalSolver(
        problem,
        solver_parameters=stokes_parameters,
        options_prefix="stokes_1")
    solver_stokes1.solve()
    problem = fd.LinearVariationalProblem(stokes(phi, INMOUTH1, OUTMOUTH1),
                                          L,
                                          U2,
                                          bcs=bcs2)
    solver_stokes2 = fd.LinearVariationalSolver(
        problem,
        solver_parameters=stokes_parameters,
        options_prefix="stokes_2")
    solver_stokes2.solve()

    # Convection difussion equation
    ks = fd.Constant(1e0)
    cp_value = 5.0e5
    cp = fd.Constant(cp_value)
    T = fd.FunctionSpace(mesh, "DG", 1)
    t = fd.Function(T, name="Temperature")
    w = fd.TestFunction(T)

    # Mesh-related functions
    n = fd.FacetNormal(mesh)
    h = fd.CellDiameter(mesh)
    u1, p1 = fd.split(U1)
    u2, p2 = fd.split(U2)

    def upwind(u):
        return (dot(u, n) + abs(dot(u, n))) / 2.0

    u1n = upwind(u1)
    u2n = upwind(u2)

    # Penalty term
    alpha = fd.Constant(500.0)
    # Bilinear form
    a_int = dot(grad(w), ks * grad(t) - cp * (u1 + u2) * t) * dx

    a_fac = (fd.Constant(-1.0) * ks * dot(avg(grad(w)), jump(t, n)) * dS +
             fd.Constant(-1.0) * ks * dot(jump(w, n), avg(grad(t))) * dS +
             ks("+") *
             (alpha("+") / avg(h)) * dot(jump(w, n), jump(t, n)) * dS)

    a_vel = (dot(
        jump(w),
        cp * (u1n("+") + u2n("+")) * t("+") - cp *
        (u1n("-") + u2n("-")) * t("-"),
    ) * dS + dot(w,
                 cp * (u1n + u2n) * t) * ds)

    a_bnd = (dot(w,
                 cp * dot(u1 + u2, n) * t) * (ds(INLET1) + ds(INLET2)) +
             w * t * (ds(INLET1) + ds(INLET2)) - w * tin1 * ds(INLET1) -
             w * tin2 * ds(INLET2) + alpha / h * ks * w * t *
             (ds(INLET1) + ds(INLET2)) - ks * dot(grad(w), t * n) *
             (ds(INLET1) + ds(INLET2)) - ks * dot(grad(t), w * n) *
             (ds(INLET1) + ds(INLET2)))

    aT = a_int + a_fac + a_vel + a_bnd

    LT_bnd = (alpha / h * ks * tin1 * w * ds(INLET1) +
              alpha / h * ks * tin2 * w * ds(INLET2) -
              tin1 * ks * dot(grad(w), n) * ds(INLET1) -
              tin2 * ks * dot(grad(w), n) * ds(INLET2))

    problem = fd.LinearVariationalProblem(derivative(aT, t), LT_bnd, t)
    solver_temp = fd.LinearVariationalSolver(
        problem,
        solver_parameters=temperature_parameters,
        options_prefix="temperature",
    )
    solver_temp.solve()
    # fd.solve(eT == 0, t, solver_parameters=temperature_parameters)

    # Cost function: Flux at the cold outlet
    scale_factor = 4e-4
    Jform = fd.assemble(
        fd.Constant(-scale_factor * cp_value) * inner(t * u1, n) * ds(OUTLET1))
    # Constraints: Pressure drop on each fluid
    power_drop = 1e-2
    Power1 = fd.assemble(p1 / power_drop * ds(INLET1))
    Power2 = fd.assemble(p2 / power_drop * ds(INLET2))

    phi_pvd = fd.File("phi_evolution.pvd")

    def deriv_cb(phi):
        with stop_annotating():
            phi_pvd.write(phi[0])

    c = fda.Control(s)

    # Reduced Functionals
    Jhat = LevelSetFunctional(Jform, c, phi, derivative_cb_pre=deriv_cb)
    P1hat = LevelSetFunctional(Power1, c, phi)
    P1control = fda.Control(Power1)

    P2hat = LevelSetFunctional(Power2, c, phi)
    P2control = fda.Control(Power2)

    Jhat_v = Jhat(phi)
    print("Initial cost function value {:.5f}".format(Jhat_v), flush=True)
    print("Power drop 1 {:.5f}".format(Power1), flush=True)
    print("Power drop 2 {:.5f}".format(Power2), flush=True)

    beta_param = 0.08
    # Regularize the shape derivatives only in the domain marked with 0
    reg_solver = RegularizationSolver(S,
                                      mesh,
                                      beta=beta_param,
                                      gamma=1e5,
                                      dx=dx,
                                      design_domain=0)

    tol = 1e-5
    dt = 0.05
    params = {
        "alphaC": 1.0,
        "debug": 5,
        "alphaJ": 1.0,
        "dt": dt,
        "K": 1e-3,
        "maxit": n_iters,
        "maxtrials": 5,
        "itnormalisation": 10,
        "tol_merit":
        5e-3,  # new merit can be within 0.5% of the previous merit
        # "normalize_tol" : -1,
        "tol": tol,
    }

    solver_parameters = {
        "reinit_solver": {
            "h_factor": 2.0,
        }
    }
    # Optimization problem
    problem = InfDimProblem(
        Jhat,
        reg_solver,
        ineqconstraints=[
            Constraint(P1hat, 1.0, P1control),
            Constraint(P2hat, 1.0, P2control),
        ],
        solver_parameters=solver_parameters,
    )
    results = nlspace_solve(problem, params)

    return results
Exemplo n.º 37
0
        def get_flux_form(dS, M):

            fluxes = (-inner(2*avg(outer(phi, n)), avg(grad(gamma)*M))
                      - inner(avg(grad(phi)*M), 2*avg(outer(gamma, n)))
                      + mu*inner(2*avg(outer(phi, n)), 2*avg(outer(gamma, n)*kappa)))*dS
            return fluxes
Exemplo n.º 38
0
Khet = fd.as_tensor(((1.0 + x, 0, 0), 
                      (0, 1.0+y, 0),
                       (0, 0, 1.0+z)))

#Khet = fd.as_tensor(((1,0,0),(0,1,0),(0,0,1)))
#Khet = fd.as_tensor(((1,0),(0,1)))
Khet = fd.Function(W).interpolate(Khet)
Khet.rename('K', 'Permeability')

# Porosity
por = fd.Constant(1.0)

# We can now define the bilinear and linear forms for the left and right
# hand sides of our equation respectively::
dx = fd.dx
a = (fd.dot(Khet * fd.grad(u), fd.grad(v))) * dx
m = u * v * por * dx

# Defining the eigenvalue problem

petsc_a = fd.assemble(a).M.handle
petsc_m = fd.assemble(m).M.handle

num_eigenvalues = 20

# Set solver options
opts = PETSc.Options()
opts.setValue("eps_gen_hermitian", None)
#opts.setValue("st_pc_factor_shift_type", "NONZERO")
opts.setValue("eps_type", "krylovschur")
#opts.setValue("eps_smallest_magnitude", None)
Exemplo n.º 39
0
Ky.dat.data[...] = coords2ijk(coords[:, 0], coords[:, 1],
                                    coords[:, 2], Delta=Delta, data_array=ky_array)
Kz.dat.data[...] = coords2ijk(coords[:, 0], coords[:, 1],
                                    coords[:, 2], Delta=Delta, data_array=kz_array)

print("END: Read in reservoir fields")

# Permeability field harmonic interpolation to facets
Kx_facet = fd.conditional(fd.gt(fd.avg(Kx), 0.0), Kx('+')*Kx('-') / fd.avg(Kx), 0.0)
Ky_facet = fd.conditional(fd.gt(fd.avg(Ky), 0.0), Ky('+')*Ky('-') / fd.avg(Ky), 0.0)
Kz_facet = fd.conditional(fd.gt(fd.avg(Kz), 0.0), Kz('+')*Kz('-') / fd.avg(Kz), 0.0)

# We can now define the bilinear and linear forms for the left and right
dx = fd.dx
KdivU = fd.as_vector((Kx_facet*u.dx(0), Ky_facet*u.dx(1), Kz_facet*u.dx(2)))
a = (fd.dot(KdivU, fd.grad(v))) * dx
m = u * v * phi * dx

# Defining the eigenvalue problem

petsc_a = fd.assemble(a).M.handle
petsc_m = fd.assemble(m).M.handle

num_eigenvalues = 3

# Set solver options
opts = PETSc.Options()
opts.setValue("eps_gen_hermitian", None)
#opts.setValue("st_pc_factor_shift_type", "NONZERO")
opts.setValue("eps_type", "krylovschur")
#opts.setValue("eps_smallest_magnitude", None)
Exemplo n.º 40
0
    def _setup_solver(self):
        state = self.state      # just cutting down line length a bit
        dt = state.timestepping.dt
        beta = dt*state.timestepping.alpha
        mu = state.mu

        # Split up the rhs vector (symbolically)
        u_in, p_in, b_in = split(state.xrhs)

        # Build the reduced function space for u,p
        M = MixedFunctionSpace((state.V[0], state.V[1]))
        w, phi = TestFunctions(M)
        u, p = TrialFunctions(M)

        # Get background fields
        bbar = state.bbar

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        b = -dot(k,u)*dot(k,grad(bbar))*beta + b_in

        # vertical projection
        def V(u):
            return k*inner(u,k)

        eqn = (
            inner(w, (u - u_in))*dx
            - beta*div(w)*p*dx
            - beta*inner(w,k)*b*dx
            + phi*div(u)*dx
        )

        if mu is not None:
            eqn += dt*mu*inner(w,k)*inner(u,k)*dx
        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u p solver
        self.up = Function(M)

        # Boundary conditions (assumes extruded mesh)
        dim = M.sub(0).ufl_element().value_shape()[0]
        bc = ("0.0",)*dim
        bcs = [DirichletBC(M.sub(0), Expression(bc), "bottom"),
               DirichletBC(M.sub(0), Expression(bc), "top")]

        # preconditioner equation
        L = self.L
        Ap = (
            inner(w,u) + L*L*div(w)*div(u) +
            phi*p/L/L
        )*dx

        # Solver for u, p
        up_problem = LinearVariationalProblem(
            aeqn, Leqn, self.up, bcs=bcs, aP=Ap)

        nullspace = MixedVectorSpaceBasis(M,
                                          [M.sub(0),
                                           VectorSpaceBasis(constant=True)])

        self.up_solver = LinearVariationalSolver(up_problem,
                                                 solver_parameters=self.params,
                                                 nullspace=nullspace)

        # Reconstruction of b
        b = TrialFunction(state.V[2])
        gamma = TestFunction(state.V[2])

        u, p = self.up.split()
        self.b = Function(state.V[2])

        b_eqn = gamma*(b - b_in +
                       dot(k,u)*dot(k,grad(bbar))*beta)*dx

        b_problem = LinearVariationalProblem(lhs(b_eqn),
                                             rhs(b_eqn),
                                             self.b)
        self.b_solver = LinearVariationalSolver(b_problem)
Exemplo n.º 41
0
    def _setup_solver(self):
        state = self.state      # just cutting down line length a bit
        dt = state.timestepping.dt
        beta = dt*state.timestepping.alpha
        cp = state.parameters.cp
        mu = state.mu

        # Split up the rhs vector (symbolically)
        u_in, rho_in, theta_in = split(state.xrhs)

        # Build the reduced function space for u,rho
        M = MixedFunctionSpace((state.V[0], state.V[1]))
        w, phi = TestFunctions(M)
        u, rho = TrialFunctions(M)

        n = FacetNormal(state.mesh)

        # Get background fields
        thetabar = state.thetabar
        rhobar = state.rhobar
        pibar = exner(thetabar, rhobar, state)
        pibar_rho = exner_rho(thetabar, rhobar, state)
        pibar_theta = exner_theta(thetabar, rhobar, state)

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        theta = -dot(k,u)*dot(k,grad(thetabar))*beta + theta_in

        # Only include theta' (rather than pi') in the vertical
        # component of the gradient

        # the pi prime term (here, bars are for mean and no bars are
        # for linear perturbations)

        pi = pibar_theta*theta + pibar_rho*rho

        # vertical projection
        def V(u):
            return k*inner(u,k)

        eqn = (
            inner(w, (u - u_in))*dx
            - beta*cp*div(theta*V(w))*pibar*dx
            # following does nothing but is preserved in the comments
            # to remind us why (because V(w) is purely vertical.
            # + beta*cp*jump(theta*V(w),n)*avg(pibar)*dS_v
            - beta*cp*div(thetabar*w)*pi*dx
            + beta*cp*jump(thetabar*w,n)*avg(pi)*dS_v
            + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx
            + beta*jump(phi*u, n)*avg(rhobar)*(dS_v + dS_h)
        )

        if mu is not None:
            eqn += dt*mu*inner(w,k)*inner(u,k)*dx
        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Place to put result of u rho solver
        self.urho = Function(M)

        # Boundary conditions (assumes extruded mesh)
        dim = M.sub(0).ufl_element().value_shape()[0]
        bc = ("0.0",)*dim
        bcs = [DirichletBC(M.sub(0), Expression(bc), "bottom"),
               DirichletBC(M.sub(0), Expression(bc), "top")]

        # Solver for u, rho
        urho_problem = LinearVariationalProblem(
            aeqn, Leqn, self.urho, bcs=bcs)

        self.urho_solver = LinearVariationalSolver(urho_problem,
                                                   solver_parameters=self.params,
                                                   options_prefix='ImplicitSolver')

        # Reconstruction of theta
        theta = TrialFunction(state.V[2])
        gamma = TestFunction(state.V[2])

        u, rho = self.urho.split()
        self.theta = Function(state.V[2])

        theta_eqn = gamma*(theta - theta_in +
                           dot(k,u)*dot(k,grad(thetabar))*beta)*dx

        theta_problem = LinearVariationalProblem(lhs(theta_eqn),
                                                 rhs(theta_eqn),
                                                 self.theta)
        self.theta_solver = LinearVariationalSolver(theta_problem,
                                                    options_prefix='thetabacksubstitution')
Exemplo n.º 42
0
    def initialize(self, pc):
        from firedrake import TrialFunction, TestFunction, dx, \
            assemble, inner, grad, split, Constant, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        prefix = pc.getOptionsPrefix() + "pcd_"

        # we assume P has things stuffed inside of it
        _, P = pc.getOperators()
        context = P.getPythonContext()

        test, trial = context.a.arguments()
        if test.function_space() != trial.function_space():
            raise ValueError("Pressure space test and trial space differ")

        Q = test.function_space()

        p = TrialFunction(Q)
        q = TestFunction(Q)

        mass = p*q*dx

        # Regularisation to avoid having to think about nullspaces.
        stiffness = inner(grad(p), grad(q))*dx + Constant(1e-6)*p*q*dx

        opts = PETSc.Options()
        # we're inverting Mp and Kp, so default them to assembled.
        # Fp only needs its action, so default it to mat-free.
        # These can of course be overridden.
        # only Fp is referred to in update, so that's the only
        # one we stash.
        default = parameters["default_matrix_type"]
        Mp_mat_type = opts.getString(prefix+"Mp_mat_type", default)
        Kp_mat_type = opts.getString(prefix+"Kp_mat_type", default)
        self.Fp_mat_type = opts.getString(prefix+"Fp_mat_type", "matfree")

        Mp = assemble(mass, form_compiler_parameters=context.fc_params,
                      mat_type=Mp_mat_type)
        Kp = assemble(stiffness, form_compiler_parameters=context.fc_params,
                      mat_type=Kp_mat_type)

        Mp.force_evaluation()
        Kp.force_evaluation()

        # FIXME: Should we transfer nullspaces over.  I think not.

        Mksp = PETSc.KSP().create()
        Mksp.setOptionsPrefix(prefix + "Mp_")
        Mksp.setOperators(Mp.petscmat)
        Mksp.setUp()
        Mksp.setFromOptions()
        self.Mksp = Mksp

        Kksp = PETSc.KSP().create()
        Kksp.setOptionsPrefix(prefix + "Kp_")
        Kksp.setOperators(Kp.petscmat)
        Kksp.setUp()
        Kksp.setFromOptions()
        self.Kksp = Kksp

        state = context.appctx["state"]

        Re = context.appctx.get("Re", 1.0)

        velid = context.appctx["velocity_space"]

        u0 = split(state)[velid]
        fp = 1.0/Re * inner(grad(p), grad(q))*dx + inner(u0, grad(p))*q*dx

        self.Re = Re
        self.Fp = allocate_matrix(fp, form_compiler_parameters=context.fc_params,
                                  mat_type=self.Fp_mat_type)
        self._assemble_Fp = create_assembly_callable(fp, tensor=self.Fp,
                                                     form_compiler_parameters=context.fc_params,
                                                     mat_type=self.Fp_mat_type)
        self._assemble_Fp()
        self.Fp.force_evaluation()
        Fpmat = self.Fp.petscmat
        self.workspace = [Fpmat.createVecLeft() for i in (0, 1)]