def parse_args(): parser = argparse.ArgumentParser( description="Train classification models on ImageNet", formatter_class=argparse.ArgumentDefaultsHelpFormatter) models.add_model_args(parser) fit.add_fit_args(parser) data.add_data_args(parser) dali.add_dali_args(parser) data.add_data_aug_args(parser) return parser.parse_args()
def main(): parser = argparse.ArgumentParser( description='train unet', formatter_class=argparse.ArgumentDefaultsHelpFormatter) fit.add_fit_args(parser) seed = 2012310818 np.random.seed(seed) parser.set_defaults(batch_size=16, num_epochs=40, lr=0.0001, optimizer='adam' # lr_step_epochs='10', # lr_factor = 0.8 ) args = parser.parse_args() kv = mx.kvstore.create(args.kv_store) unet = segnet(workspace=workspace) train, val, lt, lv = data_iter(args, kv) fit.fit(args, unet[2], data_iter)
help='the number of classes') parser.add_argument('--num-examples', type=int, default=60000, help='the number of training examples') parser.add_argument( '--add_stn', action="store_true", default=False, help='Add Spatial Transformer Network Layer (lenet only)') parser.add_argument('--image_shape', default='1, 28, 28', help='shape of training images') fit.add_fit_args(parser) choose_labels = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]] for index, choose_label in enumerate(choose_labels): if index == 0: train_mission_first(parser=parser, choose_label=choose_label, save_dir_thistime=list_to_str(choose_label)) else: model, reg_params = train_mission_second_update_omega( parser=parser, choose_label_lasttime=choose_labels[index - 1], choose_label=choose_label, save_dir_lasttime=list_to_str(choose_labels[index - 1]), save_dir_thistime=list_to_str(choose_label),