Exemplo n.º 1
0
def prefactor(q2, par, B, P, lep):
    GF = par['GF']
    ml = par['m_'+lep]
    scale = config['renormalization scale']['bpll']
    alphaem = running.get_alpha(par, scale)['alpha_e']
    di_dj = meson_quark[(B,P)]
    qi_qj = meson_quark[(B, P)]
    if qi_qj == 'bu':
        Vij = ckm.get_ckm(par)[0,2] # V_{ub} for b->u transitions
    if qi_qj == 'bc':
        Vij = ckm.get_ckm(par)[1,2] # V_{cb} for b->c transitions
    if q2 <= ml**2:
        return 0
    return 4*GF/sqrt(2)*Vij
Exemplo n.º 2
0
def prefactor(q2, par, B, P, lep):
    GF = par['GF']
    ml = par['m_' + lep]
    scale = config['renormalization scale']['bpll']
    alphaem = running.get_alpha(par, scale)['alpha_e']
    di_dj = meson_quark[(B, P)]
    qi_qj = meson_quark[(B, P)]
    if qi_qj == 'bu':
        Vij = ckm.get_ckm(par)[0, 2]  # V_{ub} for b->u transitions
    if qi_qj == 'bc':
        Vij = ckm.get_ckm(par)[1, 2]  # V_{cb} for b->c transitions
    if q2 <= ml**2:
        return 0
    return 4 * GF / sqrt(2) * Vij
Exemplo n.º 3
0
def prefactor(q2, par, B, V, lep):
    GF = par['GF']
    scale = config['renormalization scale']['bvll']
    ml = par['m_' + lep]
    mB = par['m_' + B]
    mV = par['m_' + V]
    tauB = par['tau_' + B]
    laB = lambda_K(mB**2, mV**2, q2)
    laGa = lambda_K(q2, ml**2, 0.)
    qi_qj = meson_quark[(B, V)]
    if qi_qj == 'bu':
        Vij = ckm.get_ckm(par)[0, 2]  # V_{ub} for b->u transitions
    if qi_qj == 'bc':
        Vij = ckm.get_ckm(par)[1, 2]  # V_{cb} for b->c transitions
    if q2 <= ml**2:
        return 0
    return 4 * GF / sqrt(2) * Vij
Exemplo n.º 4
0
def prefactor(q2, par, B, V, lep):
    GF = par['GF']
    scale = config['renormalization scale']['bvll']
    ml = par['m_'+lep]
    mB = par['m_'+B]
    mV = par['m_'+V]
    tauB = par['tau_'+B]
    laB  = lambda_K(mB**2, mV**2, q2)
    laGa = lambda_K(q2, ml**2, 0.)
    qi_qj = meson_quark[(B, V)]
    if qi_qj == 'bu':
        Vij = ckm.get_ckm(par)[0,2] # V_{ub} for b->u transitions
    if qi_qj == 'bc':
        Vij = ckm.get_ckm(par)[1,2] # V_{cb} for b->c transitions
    if q2 <= ml**2:
        return 0
    return 4*GF/sqrt(2)*Vij
Exemplo n.º 5
0
 def __call__(self):
     Vud = get_ckm(self.par)[0, 0]
     GF = GFeff(self.wc_obj, self.par)
     pre = GF / sqrt(2) * Vud
     ft = K(self.par) / self.xi() * 1 / (1 + self.b() * self.me_E) / abs(pre)**2
     fn = self.par['f_n']
     Rp = self.par['deltaRp_n']
     return ft / log(2) / fn / (1 + Rp)
Exemplo n.º 6
0
def wilsoncoefficients_sm_sl(par, scale):
    r"""Return the $\Delta S=1$ Wilson coefficients of semi-leptonic operators
    in the SM at the scale `scale`.

    Currently only $C_{10}$ (top and charm contributions) is implemented."""
    wc_dict = {}
    # fold in approximate m_t-dependence of C_10 (see eq. 4 of arXiv:1311.0903)
    wc_dict['C10_t'] = -4.10  * (par['m_t']/173.1)**1.53
    Vus = abs(ckm.get_ckm(par)[0, 1])
    Pc = 0.115 # +-0.011, arXiv:hep-ph/0605203
    wc_dict['C10_c'] = -Pc / par['s2w'] * Vus**4
    return wc_dict
Exemplo n.º 7
0
def wilsoncoefficients_sm_sl(par, scale):
    r"""Return the $\Delta S=1$ Wilson coefficients of semi-leptonic operators
    in the SM at the scale `scale`.

    Currently only $C_{10}$ (top and charm contributions) is implemented."""
    wc_dict = {}
    # fold in approximate m_t-dependence of C_10 (see eq. 4 of arXiv:1311.0903)
    wc_dict['C10_t'] = -4.10 * (par['m_t'] / 173.1)**1.53
    Vus = abs(ckm.get_ckm(par)[0, 1])
    Pc = 0.115  # +-0.011, arXiv:hep-ph/0605203
    wc_dict['C10_c'] = -Pc / par['s2w'] * Vus**4
    return wc_dict
Exemplo n.º 8
0
def Ft_superallowed(par, wc_obj, A):
    r"""Corrected $\mathcal{F}t$ value of the beta decay of isotope `A`."""
    MF = sqrt(2)
    MGT = 0
    Z = nuclei_superallowed[A]['Z']
    scale = config['renormalization scale']['betadecay']
    C = wc_eff(par, wc_obj, scale, nu='e')
    Xi = xi(C, MF, MGT)
    B = b(C, MF, MGT, par['alpha_e'], Z, s=-1)  # s=-1 for beta+ decay
    me_E = nuclei_superallowed[A]['<me/E>']
    Vud = get_ckm(par)[0, 0]
    GF = GFeff(wc_obj, par)
    pre = GF / sqrt(2) * Vud
    ddRp = par['delta_deltaRp_Z2'] * Z**2  # relative uncertainty on \delta R' (universal)
    return (1 + ddRp) * K(par) / Xi * 1 / (1 + B * me_E) / abs(pre)**2