Exemplo n.º 1
0
class Dense(Module):
  features: int
  kernel_init: Callable = initializers.lecun_normal()
  bias_init: Callable = initializers.zeros
  use_bias: bool = True

  @compact
  def __call__(self, inputs):
    kernel = self.param('kernel', self.kernel_init,
                        (inputs.shape[-1], self.features))
    y = lax.dot_general(inputs, kernel,
                        (((inputs.ndim - 1,), (0,)), ((), ())),)
    if self.use_bias:
      bias = self.param('bias', self.bias_init, (self.features,))
      y = y + bias
    return y
Exemplo n.º 2
0
from flax.linen.module import Module, compact
from flax.linen.initializers import lecun_normal, variance_scaling, zeros

from jax import lax
import jax.numpy as jnp
import numpy as np


PRNGKey = Any
Shape = Iterable[int]
Dtype = Any  # this could be a real type?
Array = Any


default_kernel_init = lecun_normal()


def _normalize_axes(axes, ndim):
  # A tuple by convention. len(axes_tuple) then also gives the rank efficiently.
  return tuple(sorted([ax if ax >= 0 else ndim + ax for ax in axes]))


def _canonicalize_tuple(x):
  if isinstance(x, Iterable):
    return tuple(x)
  else:
    return (x,)


class DenseGeneral(Module):